Abstract
OBJECTIVE: Leptin gene expression is higher in females than in males, and is regulated by many factors including energy intake and insulin, but little is known about the inheritance of leptin gene expression. We have investigated leptin (LEP) gene express-ion, to determine whether it is heritable, and whether the difference in LEP expression between males and females has a genetic component.
STUDY POPULATION: A total of 319 baboons (Papio hamadryas) (220 females, 99 males) from a captive, pedigreed colony.
MEASUREMENTS AND METHODS: We cloned a baboon LEP cDNA, and quantified LEP mRNA expression in baboon omental adipose tissue using a ribonuclease protection assay. In addition, we assayed circulating leptin levels, adipocyte cell volume, and weight. We used maximum likelihood-based variance decomposition methods to determine the genetic architecture of LEP levels, including testing for genotype-by-sex interaction.
RESULTS: Omental LEP mRNA expression was significantly and positively correlated with weight and adipocyte cell volume in baboons. Both mRNA and plasma levels of leptin were higher in females than in males, and both measures were heritable. The results of our genetic analysis show that there was a genotype-by-sex interaction in the levels of plasma leptin, but not in omental LEP mRNA.
CONCLUSIONS: As in humans, baboon leptin mRNA and protein levels are expressed at a higher level in females than in males. We detected evidence that the plasma levels were affected by genes that are differentially expressed in males and females, while the omental mRNA levels were not. This finding suggests that the genes that differentially regulate plasma leptin levels between males and females may exert their effects on post-transcriptional processes.