Abstract
Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14-93 years) from 94 large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma, Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds score (LOD)=3.9) at 13q12.11, to 18q22.2 (LOD=3.2) and to 3p14.1 (LOD=3.0) for Oklahoma. This is the first study to identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a disproportionately high rate of type 2 diabetes and other age-related disorders.