Publications

2014

Franceschini, Nora, Ran Tao, Lan Liu, Sue Rutherford, Karin Haack, Laura Almasy, Harald Hh Göring, et al. (2014) 2014. “Mapping of a Blood Pressure QTL on Chromosome 17 in American Indians of the Strong Heart Family Study.”. BMC Cardiovascular Disorders 14: 158. https://doi.org/10.1186/1471-2261-14-158.

BACKGROUND: Blood pressure (BP) is a complex trait, with a heritability of 30 to 40%. Several genome wide associated BP loci explain only a small fraction of the phenotypic variation. Family studies can provide an important tool for gene discovery by utilizing trait and genetic transmission information among relative-pairs. We have previously described a quantitative trait locus at chromosome 17q25.3 influencing systolic BP in American Indians of the Strong Heart Family Study (SHFS). This locus has been reported to associate with variation in BP traits in family studies of Europeans, African Americans and Hispanics.

METHODS: To follow-up persuasive linkage findings at this locus, we performed comprehensive genotyping in the 1-LOD unit support interval region surrounding this QTL using a multi-step strategy. We first genotyped 1,334 single nucleotide polymorphisms (SNPs) in 928 individuals from families that showed evidence of linkage for BP. We then genotyped a second panel of 306 SNPs in all SHFS participants (N = 3,807) for genes that displayed the strongest evidence of association in the region, and, in a third step, included additional genotyping to better cover the genes of interest and to interrogate plausible candidate genes in the region.

RESULTS: Three genes had multiple SNPs marginally associated with systolic BP (TBC1D16, HRNBP3 and AZI1). In BQTN analysis, used to estimate the posterior probability that any variant in each gene had an effect on the phenotype, AZI1 showed the most prominent findings (posterior probability of 0.66). Importantly, upon correction for multiple testing, none of our study findings could be distinguished from chance.

CONCLUSION: Our findings demonstrate the difficulty of follow-up studies of linkage studies for complex traits, particularly in the context of low powered studies and rare variants underlying linkage peaks.

Hernandez-Escalante, Victor M, Edna J Nava-Gonzalez, Saroja Voruganti, Jack W Kent, Karin Haack, Hugo A Laviada-Molina, Fernanda Molina-Segui, et al. (2014) 2014. “Replication of Obesity and Diabetes-Related SNP Associations in Individuals from Yucatán, México.”. Frontiers in Genetics 5: 380. https://doi.org/10.3389/fgene.2014.00380.

The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is  19%. T2D is affected by both environmental and genetic factors. Although specific genes have been implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects. Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from 10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated individuals (n = 259) living in southeastern Mexico were enrolled in the study based at the University of Yucatan School of Medicine in Merida. Phenotypes measured included anthropometric measurements, circulating levels of adipose tissue endocrine factors (leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure. Association analyses were conducted by measured genotype analysis implemented in SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2 to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11 with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant association (p = 0.001) was observed between plasma leptin and rs5219 of KCNJ11.

Franceschini, Nora, Yijuan Hu, Alex P Reiner, Steven Buyske, Mike Nalls, Lisa R Yanek, Yun Li, et al. (2014) 2014. “Prospective Associations of Coronary Heart Disease Loci in African Americans Using the MetaboChip: The PAGE Study.”. PloS One 9 (12): e113203. https://doi.org/10.1371/journal.pone.0113203.

BACKGROUND: Coronary heart disease (CHD) is a leading cause of morbidity and mortality in African Americans. However, there is a paucity of studies assessing genetic determinants of CHD in African Americans. We examined the association of published variants in CHD loci with incident CHD, attempted to fine map these loci, and characterize novel variants influencing CHD risk in African Americans.

METHODS AND RESULTS: Up to 8,201 African Americans (including 546 first CHD events) were genotyped using the MetaboChip array in the Atherosclerosis Risk in Communities (ARIC) study and Women's Health Initiative (WHI). We tested associations using Cox proportional hazard models in sex- and study-stratified analyses and combined results using meta-analysis. Among 44 validated CHD loci available in the array, we replicated and fine-mapped the SORT1 locus, and showed same direction of effects as reported in studies of individuals of European ancestry for SNPs in 22 additional published loci. We also identified a SNP achieving array wide significance (MYC: rs2070583, allele frequency 0.02, P = 8.1 × 10(-8)), but the association did not replicate in an additional 8,059 African Americans (577 events) from the WHI, HealthABC and GeneSTAR studies, and in a meta-analysis of 5 cohort studies of European ancestry (24,024 individuals including 1,570 cases of MI and 2,406 cases of CHD) from the CHARGE Consortium.

CONCLUSIONS: Our findings suggest that some CHD loci previously identified in individuals of European ancestry may be relevant to incident CHD in African Americans.

2013

Alhaddad, Hasan, Razib Khan, Robert A Grahn, Barbara Gandolfi, James C Mullikin, Shelley A Cole, Timothy J Gruffydd-Jones, et al. (2013) 2013. “Extent of Linkage Disequilibrium in the Domestic Cat, Felis Silvestris Catus, and Its Breeds.”. PloS One 8 (1): e53537. https://doi.org/10.1371/journal.pone.0053537.

Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD) are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs) equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r(2)) was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r(2) was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r(2) ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r(2) ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds' population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits.

Rubicz, Rohina, Robert Yolken, Eugene Drigalenko, Melanie A Carless, Thomas D Dyer, Lara Bauman, Phillip E Melton, et al. (2013) 2013. “A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies Against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1).”. PLoS Genetics 9 (1): e1003147. https://doi.org/10.1371/journal.pgen.1003147.

Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10(-15) for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.

Yang, Jingyun, Yun Zhu, Elisa T Lee, Ying Zhang, Shelley A Cole, Karin Haack, Lyle G Best, et al. (2013) 2013. “Joint Associations of 61 Genetic Variants in the Nicotinic Acetylcholine Receptor Genes With Subclinical Atherosclerosis in American Indians: A Gene-Family Analysis.”. Circulation. Cardiovascular Genetics 6 (1): 89-96. https://doi.org/10.1161/CIRCGENETICS.112.963967.

BACKGROUND: Atherosclerosis is the underlying cause of cardiovascular disease, the leading cause of morbidity and mortality in all American populations, including American Indians. Genetic factors play an important role in the pathogenesis of atherosclerosis. Although a single-nucleotide polymorphism (SNP) may explain only a small portion of variability in disease, the joint effect of multiple variants in a pathway on disease susceptibility could be large.

METHODS AND RESULTS: Using a gene-family analysis, we investigated the joint associations of 61 tag SNPs in 7 nicotinic acetylcholine receptor genes with subclinical atherosclerosis, as measured by carotid intima-media thickness and plaque score, in 3665 American Indians from 94 families recruited by the Strong Heart Family Study (SHFS). Although multiple SNPs showed marginal association with intima-media thickness and plaque score individually, only a few survived adjustments for multiple testing. However, simultaneously modeling of the joint effect of all 61 SNPs in 7 nicotinic acetylcholine receptor genes revealed significant association of the nicotinic acetylcholine receptor gene family with both intima-media thickness and plaque score independent of known coronary risk factors.

CONCLUSIONS: Genetic variants in the nicotinic acetylcholine receptor gene family jointly contribute to subclinical atherosclerosis in American Indians who participated in the SHFS. These variants may influence the susceptibility of atherosclerosis through pathways other than cigarette smoking per se.

Tellez-Plaza, Maria, Matthew O Gribble, Saroja Voruganti, Kevin A Francesconi, Walter Goessler, Jason G Umans, Ellen K Silbergeld, et al. (2013) 2013. “Heritability and Preliminary Genome-Wide Linkage Analysis of Arsenic Metabolites in Urine.”. Environmental Health Perspectives 121 (3): 345-51. https://doi.org/10.1289/ehp.1205305.

BACKGROUND: Arsenic (III) methyltransferase (AS3MT) has been related to urine arsenic metabolites in association studies. Other genes might also play roles in arsenic metabolism and excretion.

OBJECTIVE: We evaluated genetic determinants of urine arsenic metabolites in American Indian adults from the Strong Heart Study (SHS).

METHODS: We evaluated heritability of urine arsenic metabolites [percent inorganic arsenic (%iAs), percent monomethylarsonate (%MMA), and percent dimethylarsinate (%DMA)] in 2,907 SHS participants with urine arsenic measurements and at least one relative within the cohort. We conducted a preliminary linkage analysis in a subset of 487 participants with available genotypes on approximately 400 short tandem repeat markers using a general pedigree variance component approach for localizing quantitative trait loci (QTL).

RESULTS: The medians (interquartile ranges) for %iAs, %MMA, and %DMA were 7.7% (5.4-10.7%), 13.6% (10.5-17.1%), and 78.4% (72.5-83.1%), respectively. The estimated heritability was 53% for %iAs, 50% for %MMA, and 59% for %DMA. After adjustment for sex, age, smoking, body mass index, alcohol consumption, region, and total urine arsenic concentrations, LOD [logarithm (to the base of 10) of the odds] scores indicated suggestive evidence for genetic linkage with QTLs influencing urine arsenic metabolites on chromosomes 5 (LOD = 2.03 for %iAs), 9 (LOD = 2.05 for %iAs and 2.10 for %MMA), and 11 (LOD = 1.94 for %iAs). A peak for %DMA on chromosome 10 within 2 Mb of AS3MT had an LOD of 1.80.

CONCLUSIONS: This population-based family study in American Indian communities supports a genetic contribution to variation in the distribution of arsenic metabolites in urine and, potentially, the involvement of genes other than AS3MT.

Kulkarni, Hemant, Harald H H Göring, Joanne E Curran, Vincent Diego, Thomas D Dyer, Shelley Cole, Ken R Walder, Greg R Collier, John Blangero, and Melanie A Carless. (2013) 2013. “Genetic Basis for the Increased Expression of Vacuolar H+ Translocating ATPase Genes Upon Imatinib Treatment in Human Lymphoblastoid Cells.”. Cancer Chemotherapy and Pharmacology 71 (4): 1095-100. https://doi.org/10.1007/s00280-013-2110-4.

PURPOSE: The role of v-ATPases in cancer biology is being increasingly recognized. Yeast studies indicate that the tyrosine kinase inhibitor imatinib may interact with the v-ATPase genes and alter the course of cancer progression. Data from humans in this regard are lacking.

METHODS: We constructed 55 lymphoblastoid cell lines from pedigreed, cancer-free human subjects and treated them with IC20 concentration of imatinib mesylate. Using these cell lines, we (i) estimated the heritability and differential expression of 19 genes encoding several subunits of the v-ATPase protein in response to imatinib treatment; (ii) estimated the genetic similarity among these genes; and (iii) conducted a high-density scan to find cis-regulating genetic variation associated with differential expression of these genes.

RESULTS: We found that the imatinib response of the genes encoding v-ATPase subunits is significantly heritable and can be clustered to identify novel drug targets in imatinib therapy. Further, five of these genes were significantly cis-regulated and together represented nearly half-log fold change in response to imatinib (p = 0.0107) that was homogenous (p = 0.2598).

CONCLUSIONS: Our results proffer support to the growing view that personalized regimens using proton pump inhibitors or v-ATPase inhibitors may improve outcomes of imatinib therapy in various cancers.

Fesinmeyer, Megan D, Kari E North, Marylyn D Ritchie, Unhee Lim, Nora Franceschini, Lynne R Wilkens, Myron D Gross, et al. (2013) 2013. “Genetic Risk Factors for BMI and Obesity in an Ethnically Diverse Population: Results from the Population Architecture Using Genomics and Epidemiology (PAGE) Study.”. Obesity (Silver Spring, Md.) 21 (4): 835-46. https://doi.org/10.1002/oby.20268.

OBJECTIVE: Several genome-wide association studies (GWAS) have demonstrated that common genetic variants contribute to obesity. However, studies of this complex trait have focused on ancestrally European populations, despite the high prevalence of obesity in some minority groups.

DESIGN AND METHODS: As part of the "Population Architecture using Genomics and Epidemiology (PAGE)" Consortium, we investigated the association between 13 GWAS-identified single-nucleotide polymorphisms (SNPs) and BMI and obesity in 69,775 subjects, including 6,149 American Indians, 15,415 African-Americans, 2,438 East Asians, 7,346 Hispanics, 604 Pacific Islanders, and 37,823 European Americans. For the BMI-increasing allele of each SNP, we calculated β coefficients using linear regression (for BMI) and risk estimates using logistic regression (for obesity defined as BMI ≥ 30) followed by fixed-effects meta-analysis to combine results across PAGE sites. Analyses stratified by racial/ethnic group assumed an additive genetic model and were adjusted for age, sex, and current smoking. We defined "replicating SNPs" (in European Americans) and "generalizing SNPs" (in other racial/ethnic groups) as those associated with an allele frequency-specific increase in BMI.

RESULTS: By this definition, we replicated 9/13 SNP associations (5 out of 8 loci) in European Americans. We also generalized 8/13 SNP associations (5/8 loci) in East Asians, 7/13 (5/8 loci) in African Americans, 6/13 (4/8 loci) in Hispanics, 5/8 in Pacific Islanders (5/8 loci), and 5/9 (4/8 loci) in American Indians.

CONCLUSION: Linkage disequilibrium patterns suggest that tagSNPs selected for European Americans may not adequately tag causal variants in other ancestry groups. Accordingly, fine-mapping in large samples is needed to comprehensively explore these loci in diverse populations.

Zhang, Lili, Kylee L Spencer, Saroja Voruganti, Neal W Jorgensen, Myriam Fornage, Lyle G Best, Kristin D Brown-Gentry, et al. (2013) 2013. “Association of Functional Polymorphism Rs2231142 (Q141K) in the ABCG2 Gene With Serum Uric Acid and Gout in 4 US Populations: The PAGE Study.”. American Journal of Epidemiology 177 (9): 923-32. https://doi.org/10.1093/aje/kws330.

A loss-of-function mutation (Q141K, rs2231142) in the ATP-binding cassette, subfamily G, member 2 gene (ABCG2) has been shown to be associated with serum uric acid levels and gout in Asians, Europeans, and European and African Americans; however, less is known about these associations in other populations. Rs2231142 was genotyped in 22,734 European Americans, 9,720 African Americans, 3,849 Mexican Americans, and 3,550 American Indians in the Population Architecture using Genomics and Epidemiology (PAGE) Study (2008-2012). Rs2231142 was significantly associated with serum uric acid levels (P = 2.37 × 10(-67), P = 3.98 × 10(-5), P = 6.97 × 10(-9), and P = 5.33 × 10(-4) in European Americans, African Americans, Mexican Americans, and American Indians, respectively) and gout (P = 2.83 × 10(-10), P = 0.01, and P = 0.01 in European Americans, African Americans, and Mexican Americans, respectively). Overall, the T allele was associated with a 0.24-mg/dL increase in serum uric acid level (P = 1.37 × 10(-80)) and a 1.75-fold increase in the odds of gout (P = 1.09 × 10(-12)). The association between rs2231142 and serum uric acid was significantly stronger in men, postmenopausal women, and hormone therapy users compared with their counterparts. The association with gout was also significantly stronger in men than in women. These results highlight a possible role of sex hormones in the regulation of ABCG2 urate transporter and its potential implications for the prevention, diagnosis, and treatment of hyperuricemia and gout.