American Indians have a disproportionately high rate of kidney disease likely due to a combination of environmental and genetic factors. We performed a genome wide scan of estimated glomerular filtration rate in 3665 participants of the Strong Heart Family Study to localize genes influencing kidney disease risk factors. The participants were men and women from 13 American Indian tribes recruited from 3 centers located in Arizona, the Dakotas and Oklahoma. Multipoint variance component linkage analysis was performed for each center and on the entire cohort after controlling for center effects. Modeling strategies that incorporated age, gender and interaction terms (model 1) and another that also controlled for diabetes mellitus, systolic and diastolic blood pressure, body mass index, low density and high density lipoproteins, triglycerides and smoking status (model 2) were used. Significant evidence for linkage in the Arizona group was found on chromosome 12p12.2 at 39cM (nearest marker D12S310) using model 1. Additional loci with very suggestive evidence for linkage were detected at 1p36.31 for all groups using both models and at 2q33.3 and 9q34.2 for the Dakotas group each using model 1. No significant evidence for additive interaction with diabetes, hypertension or obesity was noted. This evidence for linkage of a quantitative trait locus influencing estimated glomerular filtration rate to a region of chromosome 12p in a large cohort of American Indians will be worth studying in more detail in the future.
Publications
2008
Growth is a complex process composed of distinct phases over the course of childhood. Although the pubertal growth spurt has received the most attention from auxologists and pediatricians, the midchildhood growth spurt has been less well studied. The midchildhood growth spurt refers to a relatively small increase in growth velocity observed in some, but not necessarily all, children in early to middle childhood. If present, the midchildhood growth spurt typically occurs sometime between the ages of 4 and 8 years, well before the onset of the far more pronounced pubertal growth spurt. In this study we used a triple logistic curve-fitting method to fit individual growth curves to serial stature data from 579 healthy participants in the Fels Longitudinal Study, 479 of whom have been genotyped for about 400 short tandem repeat (STR) markers spanning the genome. We categorized individuals according to the presence or absence of a midchildhood growth spurt and then conducted heritability and genome-wide linkage analyses on the dichotomous trait. In the total sample of 579 individuals, 336 (58%) were found to have evidence of having had a midchildhood growth spurt. There was a marked sex difference in presence of the midchildhood growth spurt, however, with 232 of the 293 males (79%) having had a midchildhood growth spurt but just 104 of the 286 females (36%) having had one. Presence of a midchildhood growth spurt was found to have a significant heritability of 0.37 +/- 0.14 (p = 0.003). Two quantitative trait loci with suggestive LOD scores were found: one at 12 cM on chromosome 17p13.2 (LOD = 2.13) between markers D17S831 and D17S938 and one at 85 cM on chromosome 12q14 (LOD = 2.06) between markers D12S83 and D12S326.
2007
Because obesity leads to a state of chronic, low-grade inflammation and oxidative stress, we hypothesized that the contribution of genes to variation in a biomarker of these two processes may be influenced by the degree of adiposity. We tested this hypothesis using samples from the San Antonio Family Heart Study that were assayed for activity of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), a marker of inflammation and oxidative stress. Using an approach to model discrete genotypexenvironment (GxE) interaction, we assigned individuals to one of two discrete diagnostic states (or "adiposity environments"): nonobese or obese, according to criteria suggested by the World Health Organization. We found a genomewide maximum LOD of 3.39 at 153 cM on chromosome 1 for Lp-PLA(2). Significant GxE interaction for Lp-PLA(2) at the genomewide maximum (P=1.16 x 10(-4)) was also found. Microarray gene-expression data were analyzed within the 1-LOD interval of the linkage signal on chromosome 1. We found two transcripts–namely, for Fc gamma receptor IIA and heat-shock protein (70 kDa)–that were significantly associated with Lp-PLA(2) (P<.001 for both) and showed evidence of cis-regulation with nominal LOD scores of 2.75 and 13.82, respectively. It would seem that there is a significant genetic response to the adiposity environment in this marker of inflammation and oxidative stress. Additionally, we conclude that GxE interaction analyses can improve our ability to identify and localize quantitative-trait loci.
Paraoxonase 1 (PON1), a high-density lipoprotein-associated enzyme known to protect against cellular damage from toxic agents, may also have antioxidant properties. PON1 activity levels have been reported to differ by sex in human and animal studies with females exhibiting higher basal levels. We measured PON1 activity frozen serum for 1,406 individuals in over 40 extended pedigrees from the San Antonio Family Heart Study (SAFHS). We used a maximum likelihood-based, variance decomposition approach implemented in SOLAR to test for genotype-by-sex (G x S) interaction on variation in PON1 activity and to determine if any of the four PON1 quantitative trait loci (QTL) previously reported by us for this population might account for sex differences in PON1 activity levels. The residual additive genetic correlation (rho(G) = 0.82) between males and females is significantly different from 1 (P = 0.009), suggesting that some of the genes that influence PON1 activity act differently in females and males or, possibly, that a different combination of genes influences this trait in each sex. In addition to the QTL at or near the PON structural locus on 7q21-22, three other potential QTLs were evaluated for sex-specific effects: one each on chromosomes 12, 17 and 19. The QTL on chromosome 17 (LOD = 2.32, P = 0.0003; flanked by microsatellite marker loci D17S974 and D17S969) shows a significant (P = 0.005) sex-specific effect on PON1 activity; accounting for 6% of the additive genetic variance in males and 20% in females. This study represents the first formal statistical genetic test for G x S interactions on normal quantitative variation in PON1 activity in humans.
PURPOSE: Microalbuminuria, defined as urine albumin-to-creatinine ratio of 0.03 to 0.299 mg/mg, is a major risk factor for cardiovascular disease. Several genetic epidemiological studies have established that microalbuminuria clusters in families, suggesting a genetic predisposition.
METHOD: We estimated heritability of microalbuminuria and performed a genome-wide linkage analysis to identify chromosomal regions influencing urine albumin-to-creatinine ratio in 486 Mexican Americans from 26 multiplex families.
RESULTS: Significant heritability was demonstrated for urine albumin-to-creatinine ratio (h = 24%, P < 0.003) after accounting for age, sex, body mass index, triglycerides, and hypertension. Genome scan revealed significant evidence of linkage of urine albumin-to-creatinine ratio to a region on chromosome 20q12 (LOD score of 3.5, P < 0.001) near marker D20S481. This region also exhibited a LOD score of 2.8 with diabetes status as a covariate and 3.0 with hypertension status as a covariate suggesting that the effect of this locus on urine albumin-to-creatinine ratio is largely independent of diabetes and hypertension.
CONCLUSION: Findings indicate that there is a gene or genes located on human chromosome 20q12 that may have functional relevance to albumin excretion in Mexican Americans. Identifying and understanding the role of the genes that determine albumin excretion would lead to the development of novel therapeutic strategies targeted at high-risk individuals in whom intensive preventive measures may be most beneficial.
Cardiovascular disease (CVD) is a major cause of mortality in the Republic of Mexico, and metabolic syndrome, a complex of CVD risk factors, is increasingly prevalent. To date, however, there have been few studies of the genetic epidemiology of metabolic syndrome in Mexico. As a first step in implementing the GEMM Family Study, a large, multicenter collaborative study, we recruited 375 individuals in 21 extended families, without ascertainment on disease, at 9 medical institutions across Mexico. Participants were measured for anthropometric (stature, weight, waist circumference) and hemodynamic (blood pressure, heart rate) phenotypes; glucose, cholesterol, and triglyceride levels were measured in fasting blood. Variance components-based quantitative genetic analyses were performed using SOLAR. All phenotypes except diastolic blood pressure were significantly heritable. Consistent with the definition of metabolic syndrome, many phenotypes exhibited significant environmental correlation, and significant genetic correlations were found between measures of adiposity and fasting glucose and fasting triglyceride levels. These preliminary data represent the first heritability estimates for many of these phenotypes in the Republic of Mexico and indicate that this study design offers excellent power for future gene discovery relative to metabolic disease.
INTRODUCTION: Adiponectin, a hormone produced exclusively by adipose tissue, is inversely associated with insulin resistance and proinflammatory conditions. The aim of this study was to find quantitative trait loci (QTLs) that affect circulating levels of adiponectin in Hispanic children participating in the VIVA LA FAMILIA Study by use of a systematic genome scan.
METHODS: The present study included extended families with at least one overweight child between 4 and 19 years old. Overweight was defined as body mass index (BMI) 95th percentile. Fasting blood was collected from 466 children from 127 families. Adiponectin was assayed by radioimmunoassay (RIA) technique in fasting serum. A genome-wide scan on circulating levels of adiponectin as a quantitative phenotype was conducted using the variance decomposition approach.
RESULTS: The highest logarithm of odds (LOD) score (4.2) was found on chromosome 11q23.2-11q24.2, and a second significant signal (LOD score=3.0) was found on chromosome 8q12.1-8q21.3. In addition, a signal suggestive of linkage (LOD score=2.5) was found between 18q21.3 and 18q22.3. After adjustment for BMI-Z score, the LOD score on chromosome 11 remained unchanged, but the signals on chromosomes 8 and 18 dropped to 1.6 and 1.7, respectively. Two other signals suggestive of linkage were found on chromosome 3 (LOD score=2.1) and 10 (LOD score=2.5). Although the region on chromosome 11 has been associated with obesity and diabetes-related traits in adult populations, this is the first observation of linkage in this region for adiponectin levels. Our suggestive linkages on chromosomes 10 and 3 replicate results for adiponectin seen in other populations. The influence of loci on chromosomes 18 and 8 on circulating adiponectin seemed to be mediated by BMI in the present study.
CONCLUSION: Our genome scan in children has identified a novel QTL and replicated QTLs in chromosomal regions previously shown to be linked with obesity and type 2 diabetes (T2D)-related phenotypes in adults. The genetic contribution of loci to adiponectin levels may vary across different populations and age groups. The strong linkage signal on chromosome 11 is most likely underlain by a gene(s) that may contribute to the high susceptibility of these Hispanic children to obesity and T2D.
Epidemiological studies may require noninvasive methods for off-site DNA collection. We compared the DNA yield and quality obtained using a whole-saliva collection device (Oragene DNA collection kit) to those from three established noninvasive methods (cytobrush, foam swab, and oral rinse). Each method was tested on 17 adult volunteers from our center, using a random crossover collection design and analyzed using repeated-measures statistics. DNA yield and quality were assessed via gel electrophoresis, spectophotometry, and polymerase chain reaction (PCR) amplification rate. The whole-saliva method provided a significantly greater DNA yield (mean +/- SD = 154.9 +/- 103.05 microg, median = 181.88) than the other methods (oral rinse = 54.74 +/- 41.72 microg, 36.56; swab = 11.44 +/- 7.39 microg, 10.72; cytobrush = 12.66 +/- 6.19, 13.22 microg) (all pairwise P < 0.05). Oral-rinse and whole-saliva samples provided the best DNA quality, whereas cytobrush and swab samples provided poorer quality DNA, as shown by lower OD(260)/OD(280) and OD(260)/OD(230) ratios. We conclude that both a 10-ml oral-rinse sample and 2-ml whole-saliva sample provide sufficient DNA quantity and better quality DNA for genetic epidemiological studies than do the commonly used buccal swab and brush techniques.
BACKGROUND: Despite the high prevalence of overweight among Hispanic children in the United States, definitive predictors of weight gain have not been identified in this population.
OBJECTIVE: The study objective was to test sociodemographic, metabolic, and behavioral predictors of 1-y weight gains in a large cohort of Hispanic children studied longitudinally.
DESIGN: Subjects (n = 879) were siblings from 319 Hispanic families enrolled in the Viva la Familia Study. Families were required to have at least one overweight child aged 4-19 y. One-year changes in weight and body composition by dual-energy X-ray absorptiometry were measured. Data were from parental interviews, birth certificates, multiple-pass 24-h dietary recalls, 3-d accelerometry, 24-h respiration calorimetry, measurements of eating in the absence of hunger, and measurement of fasting blood biochemistry indexes by radioimmunoassay. Generalized estimating equations and principal component analysis were applied.
RESULTS: Weight gain increased with age (P = 0.001), peaking at approximately 10 y of age in girls and approximately 11 y of age in boys. Mean (+/-SD) weight gain was significantly higher in overweight (7.5 +/- 3.7 kg/y) than in nonoverweight (4.4 +/- 2.4 kg/y) children and in boys than in girls. When adjusted for age, age squared, sex, and Tanner stage, the final model indicated a child's body mass index (BMI; kg/m2) status, maternal BMI, energy expenditure (total energy expenditure, basal metabolic rate, and sleeping metabolic rate), and fasting blood biochemistry indexes (total triiodothyronine, insulin, leptin, and ghrelin) as independent, positive predictors of weight gain (P = 0.01-0.001).
CONCLUSION: Knowledge of the metabolic and behavioral predictors of weight gain in Hispanic children will inform prevention and treatment efforts to address this serious public health problem in the United States.
The mitochondria are the major cellular site of energy production and respiration. Recent research has focused on investigating the role of mitochondria in disease development and it has become increasingly evident that mitochondrial dysfunction contributes to a variety of human diseases. Mitochondrial DNA (mtDNA) quantity is very important for maintaining mitochondrial function and meeting the energy needs of the body. We have measured mitochondrial content in 1259 Mexican American individuals (from 42 extended families) and have shown that mtDNA quantity (a surrogate measure of mitochondrial integrity) has a large genetic component. We performed a genome scan and a genome-wide quantitative transcriptomic scan to identify QTLs influencing mitochondrial content. A variance components linkage-based genome scan utilizing 439 STR markers was used to localize a QTL for mitochondrial content on chromosome 10q (LOD = 3.83). Significant linkage to the mitochondrial genome was also detected for mitochondrial transmission (LOD = 3.39). For replication, we measured mitochondrial content in an independent Caucasian population (1088 individuals) finding evidence for linkage in these same regions. As part of the San Antonio Family Heart Study, we obtained genome-wide quantitative transcriptional profiles from 1240 individuals. Using lymphocyte samples, we quantitated 20 413 transcripts and examined correlations between the expression levels of these transcripts and mitochondrial content using the variance components method. Using regression analysis allowing for residual genetic components, we identified 829 transcripts (including many novel genes) influencing mitochondrial content that vary in their general biological actions, from cell signaling to cell trafficking and ion binding.