Publications

2021

Rhoades, Dorothy A, John Farley, Stephen M Schwartz, Kimberly M Malloy, Wenyu Wang, Lyle G Best, Ying Zhang, et al. (2021) 2021. “Cancer Mortality in a Population-Based Cohort of American Indians - The Strong Heart Study.”. Cancer Epidemiology 74: 101978. https://doi.org/10.1016/j.canep.2021.101978.

BACKGROUND: Cancer mortality among American Indian (AI) people varies widely, but factors associated with cancer mortality are infrequently assessed.

METHODS: Cancer deaths were identified from death certificate data for 3516 participants of the Strong Heart Study, a population-based cohort study of AI adults ages 45-74 years in Arizona, Oklahoma, and North and South Dakota. Cancer mortality was calculated by age, sex and region. Cox proportional hazards model was used to assess independent associations between baseline factors in 1989 and cancer death by 2010.

RESULTS: After a median follow-up of 15.3 years, the cancer death rate per 1000 person-years was 6.33 (95 % CI 5.67-7.04). Cancer mortality was highest among men in North/South Dakota (8.18; 95 % CI 6.46-10.23) and lowest among women in Arizona (4.57; 95 % CI 2.87-6.92). Factors independently associated with increased cancer mortality included age, current or former smoking, waist circumference, albuminuria, urinary cadmium, and prior cancer history. Factors associated with decreased cancer mortality included Oklahoma compared to Dakota residence, higher body mass index and total cholesterol. Sex was not associated with cancer mortality. Lung cancer was the leading cause of cancer mortality overall (1.56/1000 person-years), but no lung cancer deaths occurred among Arizona participants. Mortality from unspecified cancer was relatively high (0.48/100 person-years; 95 % CI 0.32-0.71).

CONCLUSIONS: Regional variation in AI cancer mortality persisted despite adjustment for individual risk factors. Mortality from unspecified cancer was high. Better understanding of regional differences in cancer mortality, and better classification of cancer deaths, will help healthcare programs address cancer in AI communities.

Navas-Acien, Ana, Arce Domingo-Relloso, Pooja Subedi, Angela L Riffo-Campos, Rui Xia, Lizbeth Gomez, Karin Haack, et al. (2021) 2021. “Blood DNA Methylation and Incident Coronary Heart Disease: Evidence From the Strong Heart Study.”. JAMA Cardiology 6 (11): 1237-46. https://doi.org/10.1001/jamacardio.2021.2704.

IMPORTANCE: American Indian communities experience a high burden of coronary heart disease (CHD). Strategies are needed to identify individuals at risk and implement preventive interventions.

OBJECTIVE: To investigate the association of blood DNA methylation (DNAm) with incident CHD using a large number of methylation sites (cytosine-phosphate-guanine [CpG]) in a single model.

DESIGN, SETTING, AND PARTICIPANTS: This prospective study, including a discovery cohort (the Strong Heart Study [SHS]) and 4 additional cohorts (the Women's Health Initiative [WHI], the Framingham Heart Study [FHS], the Atherosclerosis Risk in Communities Study ([ARIC]-Black, and ARIC-White), evaluated 12 American Indian communities in 4 US states; African American women, Hispanic women, and White women throughout the US; White men and White women from Massachusetts; and Black men and women and White men and women from 4 US communities. A total of 2321 men and women (mean [SD] follow-up, 19.1 [9.2] years) were included in the SHS, 1874 women (mean [SD] follow-up, 15.8 [5.9] years) in the WHI, 2128 men and women (mean [SD] follow-up, 7.7 [1.8] years) in the FHS, 2114 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-Black, and 931 men and women (mean [SD] follow-up, 20.9 [7.2] years) in the ARIC-White. Data were collected from May 1989 to December 2018 and analyzed from February 2019 to May 2021.

EXPOSURE: Blood DNA methylation.

MAIN OUTCOME AND MEASURE: Using a high-dimensional time-to-event elastic-net model for the association of 407 224 CpG sites with incident CHD in the SHS (749 events), this study selected the differentially methylated CpG positions (DMPs) selected in the SHS and evaluated them in the WHI (531 events), FHS (143 events), ARIC-Black (350 events), and ARIC-White (121 events) cohorts.

RESULTS: The median (IQR) age of participants in SHS was 55 (49-62) years, and 1359 participants (58.6%) were women. Elastic-net models selected 505 DMPs associated with incident CHD in the SHS beyond established risk factors, center, blood cell counts, and genetic principal components. Among those DMPs, 33 were commonly selected in 3 or 4 of the other cohorts and the pooled hazard ratios from the standard Cox models were significant at P < .05 for 10 of the DMPs. For example, the hazard ratio (95% CI) for CHD comparing the 90th and 10th percentiles of differentially methylated CpGs was 0.86 (0.78-0.95) for cg16604233 (tagged to COL11A2) and 1.23 (1.08-1.39) for cg09926486 (tagged to FRMD5). Some of the DMPs were consistent in the direction of the association; others showed associations in opposite directions across cohorts. Untargeted independent elastic-net models of CHD showed distinct DMPs, genes, and network of genes in the 5 cohorts.

CONCLUSIONS AND RELEVANCE: In this multi-cohort study, blood-based DNAm findings supported an association between a complex blood epigenomic signature and CHD that was largely different across populations.

Miao, Guanhong, Ying Zhang, Zhiguang Huo, Wenjie Zeng, Jianhui Zhu, Jason G Umans, Gert Wohlgemuth, et al. (2021) 2021. “Longitudinal Plasma Lipidome and Risk of Type 2 Diabetes in a Large Sample of American Indians With Normal Fasting Glucose: The Strong Heart Family Study.”. Diabetes Care 44 (12): 2664-72. https://doi.org/10.2337/dc21-0451.

OBJECTIVE: Comprehensive assessment of alterations in lipid species preceding type 2 diabetes (T2D) is largely unknown. We aimed to identify plasma molecular lipids associated with risk of T2D in American Indians.

RESEARCH DESIGN AND METHODS: Using untargeted liquid chromatography-mass spectrometry, we repeatedly measured 3,907 fasting plasma samples from 1,958 participants who attended two examinations (∼5.5 years apart) and were followed up to 16 years in the Strong Heart Family Study. Mixed-effects logistic regression was used to identify lipids associated with risk of T2D, adjusting for traditional risk factors. Repeated measurement analysis was performed to examine the association between change in lipidome and change in continuous measures of T2D, adjusting for baseline lipids. Multiple testing was controlled by false discovery rate at 0.05.

RESULTS: Higher baseline level of 33 lipid species, including triacylglycerols, diacylglycerols, phosphoethanolamines, and phosphocholines, was significantly associated with increased risk of T2D (odds ratio [OR] per SD increase in log2-transformed baseline lipids 1.50-2.85) at 5-year follow-up. Of these, 21 lipids were also associated with risk of T2D at 16-year follow-up. Aberrant lipid profiles were also observed in prediabetes (OR per SD increase in log2-transformed baseline lipids 1.30-2.19 for risk lipids and 0.70-0.78 for protective lipids). Longitudinal changes in 568 lipids were significantly associated with changes in continuous measures of T2D. Multivariate analysis identified distinct lipidomic signatures differentiating high- from low-risk groups.

CONCLUSIONS: Lipid dysregulation occurs many years preceding T2D, and novel molecular lipids (both baseline level and longitudinal change over time) are significantly associated with risk of T2D beyond traditional risk factors. Our findings shed light on the mechanisms linking dyslipidemia to T2D and may yield novel therapeutic targets for early intervention tailored to American Indians.

2020

Powers, Martha, Tiffany R Sanchez, Thomas K Welty, Shelley A Cole, Elizabeth C Oelsner, Fawn Yeh, Joanne Turner, et al. (2020) 2020. “Lung Function and Respiratory Symptoms After Tuberculosis in an American Indian Population. The Strong Heart Study.”. Annals of the American Thoracic Society 17 (1): 38-48. https://doi.org/10.1513/AnnalsATS.201904-281OC.

Rationale: Permanent lung function impairment after active tuberculosis infection is relatively common. It remains unclear which spirometric pattern is most prevalent after tuberculosis.Objectives: Our objective was to elucidate the impact of active tuberculosis survival on lung health in the Strong Heart Study (SHS), a population of American Indians historically highly impacted by tuberculosis. As arsenic exposure has also been related to lung function in the SHS, we also assessed the joint effect between arsenic exposure and past active tuberculosis.Methods: The SHS is an ongoing population-based, prospective study of cardiovascular disease and its risk factors in American Indian adults. This study uses tuberculosis data and spirometry data from the Visit 2 examination (1993-1995). Prior active tuberculosis was ascertained by a review of medical records. Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and FEV1/FVC were measured by spirometry. An additional analysis was conducted to evaluate the potential association between active tuberculosis and arsenic exposure.Results: A history of active tuberculosis was associated with reduced percent predicted FVC and FEV1, an increased odds of airflow obstruction (odds ratio = 1.45, 95% confidence interval = 1.08-1.95), and spirometric restrictive pattern (odds ratio = 1.73, 95% confidence interval = 1.24-2.40). These associations persisted after adjustment for diabetes and other risk factors, including smoking. We also observed the presence of cough, phlegm, and exertional dyspnea after a history of active tuberculosis. In the additional analysis, increasing urinary arsenic concentrations were associated with decreasing lung function in those with a history of active tuberculosis, but a reduced odds of active tuberculosis was found with elevated arsenic.Conclusions: Our findings support existing knowledge that a history of active tuberculosis is a risk factor for long-term respiratory impairment. Arsenic exposure, although inversely associated with prior active tuberculosis, was associated with a further decrease in lung function among those with a prior active tuberculosis history. The possible interaction between arsenic and tuberculosis, as well as the reduced odds of tuberculosis associated with arsenic exposure, warrants further investigation, as many populations at risk of developing active tuberculosis are also exposed to arsenic-contaminated water.

Hou, Ruixue, Shelley A Cole, Mariaelisa Graff, Karin Haack, Sandra Laston, Anthony G Comuzzie, Nitesh R Mehta, et al. (2020) 2020. “Genetic Variants Affecting Bone Mineral Density and Bone Mineral Content at Multiple Skeletal Sites in Hispanic Children.”. Bone 132: 115175. https://doi.org/10.1016/j.bone.2019.115175.

CONTEXT: Osteoporosis is a major public health burden with significant economic costs. However, the correlates of bone health in Hispanic children are understudied.

OBJECTIVE: We aimed to identify genetic variants associated with bone mineral density (BMD) and bone mineral content (BMC) at multiple skeletal sites in Hispanic children.

METHODS: We conducted a cross-sectional genome-wide linkage analysis, genome-wide and exome-wide association analysis of BMD and BMC. The Viva La Familia Study is a family-based cohort with a total of 1030 Hispanic children (4-19 years old at baseline) conducted in Houston, TX. BMD and BMC were measured by Dual-energy X-ray absorptiometry.

RESULTS: Significant heritability were observed for BMC and BMD at multiple skeletal sites ranging between 44 and 68% (P < 2.8 × 10-9). Significant evidence for linkage was found for BMD of pelvis and left leg on chromosome 7p14, lumbar spine on 20q13 and left rib on 6p21, and BMC of pelvis on chromosome 20q12 and total body on 14q22-23 (logarithm of odds score > 3). We found genome-wide significant association between BMC of right arm and rs762920 at PVALB (P = 4.6 × 10-8), and between pelvis BMD and rs7000615 at PTK2B (P = 7.4 × 10-8). Exome-wide association analysis revealed novel association of variants at MEGF10 and ABRAXAS2 with left arm and lumber spine BMC, respectively (P < 9 × 10-7).

CONCLUSIONS: We identified novel loci associated with BMC and BMD in Hispanic children, with strongest evidence for PTK2B. These findings provide better understanding of bone genetics and shed light on biological mechanisms underlying BMD and BMC variation.

Bozack, Anne K, Arce Domingo-Relloso, Karin Haack, Mary Gamble V, Maria Tellez-Plaza, Jason G Umans, Lyle G Best, et al. (2020) 2020. “Locus-Specific Differential DNA Methylation and Urinary Arsenic: An Epigenome-Wide Association Study in Blood Among Adults With Low-to-Moderate Arsenic Exposure.”. Environmental Health Perspectives 128 (6): 67015. https://doi.org/10.1289/EHP6263.

BACKGROUND: Chronic exposure to arsenic (As), a human toxicant and carcinogen, remains a global public health problem. Health risks persist after As exposure has ended, suggesting epigenetic dysregulation as a mechanistic link between exposure and health outcomes.

OBJECTIVES: We investigated the association between total urinary As and locus-specific DNA methylation in the Strong Heart Study, a cohort of American Indian adults with low-to-moderate As exposure [total urinary As, mean (±SD) μg/g creatinine: 11.7 (10.6)].

METHODS: DNA methylation was measured in 2,325 participants using the Illumina MethylationEPIC array. We implemented linear models to test differentially methylated positions (DMPs) and the DMRcate method to identify regions (DMRs) and conducted gene ontology enrichment analysis. Models were adjusted for estimated cell type proportions, age, sex, body mass index, smoking, education, estimated glomerular filtration rate, and study center. Arsenic was measured in urine as the sum of inorganic and methylated species.

RESULTS: In adjusted models, methylation at 20 CpGs was associated with urinary As after false discovery rate (FDR) correction (FDR< 0.05). After Bonferroni correction, 5 CpGs remained associated with total urinary As (pBonferroni<0.05), located in SLC7A11, ANKS3, LINGO3, CSNK1D, ADAMTSL4. We identified one DMR on chromosome 11 (chr11:2,322,050-2,323,247), annotated to C11orf2; TSPAN32 genes.

DISCUSSION: This is one of the first epigenome-wide association studies to investigate As exposure and locus-specific DNA methylation using the Illumina MethylationEPIC array and the largest epigenome-wide study of As exposure. The top DMP was located in SLC7A11A, a gene involved in cystine/glutamate transport and the biosynthesis of glutathione, an antioxidant that may protect against As-induced oxidative stress. Additional DMPs were located in genes associated with tumor development and glucose metabolism. Further research is needed, including research in more diverse populations, to investigate whether As-related DNA methylation signatures are associated with gene expression or may serve as biomarkers of disease development. https://doi.org/10.1289/EHP6263.

Warner, Erica T, Ying Zhang, Yue Gu, Tâmara P Taporoski, Alexandre Pereira, Immaculata DeVivo, Nicholas D Spence, et al. (2020) 2020. “Physical and Sexual Abuse in Childhood and Adolescence and Leukocyte Telomere Length: A Pooled Analysis of the Study on Psychosocial Stress, Spirituality, and Health.”. PloS One 15 (10): e0241363. https://doi.org/10.1371/journal.pone.0241363.

INTRODUCTION: We examined whether abuse in childhood and/or adolescence was associated with shorter telomere length in a pooled analysis of 3,232 participants from five diverse cohorts. We also assessed whether religion or spirituality (R/S) could buffer deleterious effects of abuse.

METHODS: Physical and sexual abuse in childhood (age <12) and adolescence (age 12-18) was assessed using the Revised Conflict Tactics Scale and questions from a 1995 Gallup survey. We measured relative leukocyte telomere lengths (RTL) using quantitative real time polymerase chain reaction. We used generalized estimating equations to assess associations of physical and sexual abuse with log-transformed RTL z-scores. Analyses were conducted in each cohort, overall, and stratified by extent of religiosity or spirituality and religious coping in adulthood. We pooled study-specific estimates using random-effects models and assessed between-study heterogeneity.

RESULTS: Compared to no abuse, severe sexual abuse was associated with lower RTL z-scores, in childhood: -15.6%, 95% CI: -25.9, -4.9; p-trend = 0.04; p-heterogeneity = 0.58 and in adolescence: -16.5%, 95% CI: -28.1, -3.0; p-trend = 0.08; p-heterogeneity = 0.68. Sexual abuse experienced in both childhood and adolescence was associated with 11.3% lower RTL z-scores after adjustment for childhood and demographic covariates (95% CI: -20.5%, -2.0%; p-trend = 0.03; p-heterogeneity = 0.62). There was no evidence of effect modification by R/S. Physical abuse was not associated with telomere length.

CONCLUSIONS: Sexual abuse in childhood or adolescence was associated with a marker of accelerated biological aging, decreased telomere length. The lack of moderation by R/S may be due to inability to capture the appropriate time period for those beliefs and practices.

Crocker, Katherine C, Arce Domingo-Relloso, Karin Haack, Amanda M Fretts, Wan-Yee Tang, Miguel Herreros, Maria Tellez-Plaza, Daniele Fallin, Shelley A Cole, and Ana Navas-Acien. (2020) 2020. “DNA Methylation and Adiposity Phenotypes: An Epigenome-Wide Association Study Among Adults in the Strong Heart Study.”. International Journal of Obesity (2005) 44 (11): 2313-22. https://doi.org/10.1038/s41366-020-0646-z.

BACKGROUND: Elevated adiposity is often posited by medical and public health researchers to be a risk factor associated with cardiovascular disease, diabetes, and other diseases. These health challenges are now thought to be reflected in epigenetic modifications to DNA molecules, such as DNA methylation, which can alter gene expression.

METHODS: Here we report the results of three Epigenome Wide Association Studies (EWAS) in which we assessed the differential methylation of DNA (obtained from peripheral blood) associated with three adiposity phenotypes (BMI, waist circumference, and impedance-measured percent body fat) among American Indian adult participants in the Strong Heart Study.

RESULTS: We found differential methylation at 8264 CpG sites associated with at least one of our three response variables. Of the three adiposity proxies we measured, waist circumference had the highest number of associated differentially methylated CpGs, while percent body fat was associated with the lowest. Because both waist circumference and percent body fat relate to physiology, we focused interpretations on these variables. We found a low degree of overlap between these two variables in our gene ontology enrichment and Differentially Methylated Region analyses, supporting that waist circumference and percent body fat measurements represent biologically distinct concepts.

CONCLUSIONS: We interpret these general findings to indicate that highly significant regions of the genome (DMR) and synthesis pathways (GO) in waist circumference analyses are more likely to be associated with the presence of visceral/abdominal fat than more general measures of adiposity. Our findings confirmed numerous CpG sites previously found to be differentially methylated in association with adiposity phenotypes, while we also found new differentially methylated CpG sites and regions not previously identified.

Frost, Patrice A, Shuyuan Chen, Ernesto Rodriguez-Ayala, Hugo A Laviada-Molina, Zoila Vaquera, Janeth F Gaytan-Saucedo, Wen-Hong Li, et al. (2020) 2020. “Research Methodology for in Vivo Measurements of Resting Energy Expenditure, Daily Body Temperature, Metabolic Heat and Non-Viral Tissue-Specific Gene Therapy in Baboons.”. Research in Veterinary Science 133: 136-45. https://doi.org/10.1016/j.rvsc.2020.09.020.

A large number of studies have shown that the baboon is one of the most commonly used non-human primate (NHP) research model for the study of immunometabolic complex traits such as type 2 diabetes (T2D), insulin resistance (IR), adipose tissue dysfunction (ATD), dyslipidemia, obesity (OB) and cardiovascular disease (CVD). This paper reports on innovative technologies and advanced research strategies for energetics and translational medicine with this NHP model. This includes the following: measuring resting energy expenditure (REE) with the mobile indirect calorimeter Breezing®; monitoring daily body temperature using subcutaneously implanted data loggers; quantifying metabolic heat with veterinary infrared thermography (IRT) imaging, and non-viral non-invasive, tissue-specific ultrasound-targeted microbubble destruction (UTMD) gene-based therapy. These methods are of broad utility; for example, they may facilitate the engineering of ectopic overexpression of brown adipose tissue (BAT) mUCP-1 via UTMD-gene therapy into baboon SKM to achieve weight loss, hypophagia and immunometabolic improvement. These methods will be valuable to basic and translational research, and human clinical trials, in the areas of metabolism, cardiovascular health, and immunometabolic and infectious diseases.

Warren, Wesley C, Alan Harris, Marina Haukness, Ian T Fiddes, Shwetha C Murali, Jason Fernandes, Philip C Dishuck, et al. (2020) 2020. “Sequence Diversity Analyses of an Improved Rhesus Macaque Genome Enhance Its Biomedical Utility.”. Science (New York, N.Y.) 370 (6523). https://doi.org/10.1126/science.abc6617.

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.