Publications

2012

Ebrahimi, Diako, Firoz Anwar, and Miles P Davenport. (2012) 2012. “APOBEC3G and APOBEC3F Rarely Co-Mutate the Same HIV Genome.”. Retrovirology 9: 113. https://doi.org/10.1186/1742-4690-9-113.

BACKGROUND: The human immune proteins APOBEC3G and APOBEC3F (hA3G and hA3F) induce destructive G-to-A changes in the HIV genome, referred to as 'hypermutation'. These two proteins co-express in human cells, co-localize to mRNA processing bodies and might co-package into HIV virions. Therefore they are expected to also co-mutate the HIV genome. Here we investigate the mutational footprints of hA3G and hA3F in a large population of full genome HIV-1 sequences from naturally infected patients to uniquely identify sequences hypermutated by either or both of these proteins. We develop a method of identification based on the representation of hA3G and hA3F target and product motifs that does not require an alignment to a parental/consensus sequence.

RESULTS: Out of nearly 100 hypermutated HIV-1 sequences only one sequence from the HIV-1 outlier group showed clear signatures of co-mutation by both proteins. The remaining sequences were affected by either hA3G or hA3F.

CONCLUSION: Using a novel method of identification of HIV sequences hypermutated by the hA3G and hA3F enzymes, we report a very low rate of co-mutation of full-length HIV sequences, and discuss the potential mechanisms underlying this.

2011

Sharifi, Mohammad Sharif, Diako Ebrahimi, David Brynn Hibbert, James Hook, and Stuart Loyd Hazell. (2011) 2011. “Bio-Activity of Natural Polymers from the Genus Pistacia: A Validated Model for Their Antimicrobial Action.”. Global Journal of Health Science 4 (1): 149-61. https://doi.org/10.5539/gjhs.v4n1p149.

The polymers from mastic gum of Pistacia lentiscose and subspecies of Pistacia atlantica, (sp. kurdica, mutica and cabolica) have been isolated and characterised by gel permeation chromatography (GPC) and 13C NMR spectroscopy as cis-1,4-poly-?-myrcenes. They were screened against Helicobacter pylori and other Gram-negative and Gram-positive bacteria to evaluate their antimicrobial action. In order to further test their hypothesised mode of action, two polymer types were synthesized: one from myrcene, and four from polyvinyl alcohols of different molecular weights, derivatised with p-hydroxybenzoate. The anti-microbial activity of these polymers, evaluated through their 'kill' kinetics, was found to be related to their functional groups, their molecular weight and their solubility.

Ebrahimi, Diako, Firoz Anwar, and Miles P Davenport. (2011) 2011. “APOBEC3 Has Not Left an Evolutionary Footprint on the HIV-1 Genome.”. Journal of Virology 85 (17): 9139-46. https://doi.org/10.1128/JVI.00658-11.

It is known that the human immune proteins APOBEC3G and -F (hA3G/F) can inhibit Vif-deficient HIV by G-to-A mutation; however, the roles of these enzymes in the evolution of HIV are debated. We argue that if evolutionary pressure from hA3G/F exists there should be evidence of their imprint on the HIV genome in the form of (i) underrepresentation of hA3G/F target motifs (e.g., TGGG [targeted position is underlined]) and overrepresentation of product motifs (e.g., TAGG) and/or (ii) an increase in the ratio of nonsynonymous to synonymous (NS/S) G-to-A changes among hA3G/F target motifs and a decrease of NS/S A-to-G changes among hA3G/F product motifs. To test the first hypothesis, we studied the representation of hA3G/F target and product motifs in 1,932 complete HIV-1 genomes using Markov models. We found that the highly targeted motifs are not underrepresented and their product motifs are not overrepresented. To test the second hypothesis, we determined the NS/S G↔A changes among the hA3G/F target and product motifs in 1,540 complete sets of nine HIV-1 genes. The NS/S changes did not show an increasing/decreasing trend within the target/product motifs, but the NS/S changes within the motif AG was exceptionally low. We observed the same pattern by analyzing 740 human genes. Given that hA3G/F do not act on the human genome, this suggests a small NS/S change within AG has arisen by other mechanisms. We therefore find no evidence of an evolutionary footprint of hA3G/F. We postulate several mechanisms to explain why the HIV-1 genome does not contain the hA3G/F footprint.

Hejazi, Leila, Jason W H Wong, Danni Cheng, Nicholas Proschogo, Diako Ebrahimi, Brett Garner, and Anthony S Don. (2011) 2011. “Mass and Relative Elution Time Profiling: Two-Dimensional Analysis of Sphingolipids in Alzheimer’s Disease Brains.”. The Biochemical Journal 438 (1): 165-75. https://doi.org/10.1042/BJ20110566.

Current lipidomic profiling methods rely mainly on MS to identify unknown lipids within a complex sample. We describe a new approach, involving LC×MS/MS (liquid chromatography×tandem MS) analysis of sphingolipids based on both mass and hydrophobicity, and use this method to characterize the SM (sphingomyelin), ceramide and GalCer (galactosylceramide) content of hippocampus from AD (Alzheimer's disease) and control subjects. Using a mathematical relationship we exclude the influence of sphingolipid mass on retention time, and generate two-dimensional plots that facilitate accurate visualization and characterization of the different ceramide moieties within a given sphingolipid class, because related molecules align horizontally or vertically on the plots. Major brain GalCer species that differ in mass by only 0.04 Da were easily differentiated on the basis of their hydrophobicity. The importance of our method's capacity to define all of the major GalCer species in the brain samples is illustrated by the novel observation that the proportion of GalCer with hydroxylated fatty acids increased approximately 2-fold in the hippocampus of AD patients, compared with age- and gender-matched controls. This suggests activation of fatty acid hydroxylase in AD. Our method greatly improves the clarity of data obtained in a lipid profiling experiment and can be expanded to other lipid classes.

Hejazi, Leila, David Brynn Hibbert, and Diako Ebrahimi. (2011) 2011. “Identification of the Geometrical Isomers of α-Linolenic Acid Using Gas Chromatography/Mass Spectrometry With a Binary Decision Tree.”. Talanta 83 (4): 1233-8. https://doi.org/10.1016/j.talanta.2010.10.017.

Gas chromatography, using a highly polar column, low energy (30 eV) electron ionization mass spectrometry and multivariate curve resolution, are combined to obtain the mass spectra of all eight geometrical isomers of α-linolenic acid. A step by step Student's t-test is performed on the m/z 50-294 to identify the m/z by which the geometries of the double bonds could be discriminated. The most intense peak discriminates between cis (m/z 79) and trans (m/z 95) at the central (carbon 12) position. The configuration at carbon 15 is then distinguished by m/z 68 and 236, and finally the geometry at carbon 9 is determined by m/z 93, 173, 191 and 236. A three-question binary tree is developed based on the normalized intensities of these ions by which the identity of any given isomer of α-linolenic is accurately determined. Application of Bayes theorem to data from independent samples shows that the complete configuration is determined correctly with a minimum probability of 87%.

2010

Hibbert, Brynn, Danielle Blackmore, Jianfeng Li, Diako Ebrahimi, Michael Collins, Sasha Vujic, and Paul Gavoyannis. (2010) 2010. “A Probabilistic Approach to Heroin Signatures.”. Analytical and Bioanalytical Chemistry 396 (2): 765-73. https://doi.org/10.1007/s00216-009-3260-4.

The probability density functions of amount ratios of compounds (total codeine/total morphine, 6-monoacetylemorphine/total morphine, papaverine/total morphine, and noscapine/total morphine) from the analysis of seized heroin, originating from known world regions (South East Asia, South West Asia, South America, Mexico) allows calculation of likelihood ratios for 'unknown' samples. Application of Bayes Theorem with a suitable prior probability, for example the frequency of a particular region in the database, leads to the probability that a particular profile comes from a given target region. Data from 2549 seizures of heroin at Australia's border illustrates the method, and results are compared with simple HS1 ratio approaches for assigning geographical origin. The method can be implemented in a spreadsheet and gives more refined intelligence of the origins of seized drugs than simple ranges.

2009

Hejazi, Leila, Diako Ebrahimi, Michael Guilhaus, and Brynn Hibbert. (2009) 2009. “Discrimination Among Geometrical Isomers of Alpha-Linolenic Acid Methyl Ester Using Low Energy Electron Ionization Mass Spectrometry.”. Journal of the American Society for Mass Spectrometry 20 (7): 1272-80. https://doi.org/10.1016/j.jasms.2009.02.027.

There is a consensus that electron impact ionization mass spectrometry is not capable of discriminating among geometrical isomers of unsaturated fatty acid methyl esters (and in general olefinic compounds). In this paper, we report the identification of all eight geometrical isomers of alpha-linolenic acid, one of the few essential omega-3 fatty acids that has attracted great attention, using low-energy electron ionization mass spectrometry. Three electron energies 70, 50, and 30 eV were studied and the mass spectrum of each isomer was obtained from the analysis of different concentrations of a standard mixture of alpha-linolenic acid methyl ester geometrical isomers to ensure the robustness of the method. Principal component analysis was employed to model the complex variation of m/z intensities across the isomers. Only using the data of 30 eV energy was complete differentiation among geometrical isomers observed. The unique cleavage pattern of the alpha-linolenic acid methyl ester isomers leading to a benzenium ion structure is discussed and general fragmentation rules are derived using the mass spectra of over 300 compounds with different kinds and levels of unsaturation. Application of the proposed method is not limited to alpha-linolenic acid. It can potentially be used to identify the geometrical isomers of any compounds with an olefinic chain.

Hejazi, Leila, Diako Ebrahimi, Brynn Hibbert, and Michael Guilhaus. (2009) 2009. “Compatibility of Electron Ionization and Soft Ionization Methods in Gas Chromatography/Orthogonal Time-of-Flight Mass Spectrometry.”. Rapid Communications in Mass Spectrometry : RCM 23 (14): 2181-9. https://doi.org/10.1002/rcm.4131.

Orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) was coupled to gas chromatography (GC) to measure ion yields (ratio of ion counts to number of neutrals entering the ion source) and signal-to-noise (S/N) in the electron ionization (EI) mode (hard ionization) as well as in the soft ionization modes of chemical ionization (CI), electron capture negative ion chemical ionization (NICI) and field ionization (FI). Mass accuracies of the EI and FI modes were also investigated. Sixteen structurally diverse volatile organic compounds were chosen for this study. The oa-TOF mass analyzer is highly suited for FI MS and provided an opportunity to compare the sensitivity of this ionization method to the more conventional ionization methods. Compared to the widely used quadrupole mass filter, the oa-TOF platform offers significantly greater mass accuracy and therefore the possibility of determining the empirical formula of analytes. The findings of this study showed that, for the instrument used, EI generated the most ions with the exception of compounds able to form negative ions readily. Lower ion yields in the FI mode were generally observed but the chromatograms displayed greater S/N and in many cases gave spectra dominated by a molecular ion. Ion counts in CI are limited by the very small apertures required to maintain sufficiently high pressures in the ionization chamber. Mass accuracy for molecular and fragment ions was attainable at close to manufacturer's specifications, thus providing useful information on molecular ions and neutral losses. The data presented also suggests a potentially useful instrumental combination would result if EI and FI spectra could be collected simultaneously or in alternate scans during GC/MS.

Hejazi, Leila, Diako Ebrahimi, Michael Guilhaus, and Brynn Hibbert. (2009) 2009. “Determination of the Composition of Fatty Acid Mixtures Using GC X FI-MS: A Comprehensive Two-Dimensional Separation Approach.”. Analytical Chemistry 81 (4): 1450-8. https://doi.org/10.1021/ac802277c.

Gas chromatography using a highly polar column combined with field ionization mass spectrometry (FI-MS) is used as a comprehensive two-dimensional (2D) separation approach to analyze mixtures of fatty acid methyl esters (FAMEs). A unique ordered pattern and classification of FAMEs is obtained in a 2D GC x FI-MS separation plot based on the number of carbons, the degree of unsaturation, and a combination of both by which the geometrical, positional, and structural isomers group together. FAMEs with different chain length but identical geometry, position, and degree of unsaturation follow linear patterns. These subclassifications (linear functions) can provide information about the geometry, position, and structure of unsaturation of an unknown FAME. Non-FAMEs and FAMEs with different functional groups are identified using the ordered separation pattern of the FAMEs in the GC x FI-MS plot and the exact mass data from the FI-MS mode. Measurement of exact mass also acts as a high-resolution separation technique to separate overlapping peaks. The method is illustrated by application to samples of fish, canola, and biodiesel oils and standard mixtures of 37 FAMEs and of alpha-linolenic acid methyl ester geometrical isomers. A great wealth of information is achieved in a single run.

2008

Ebrahimi, Diako, Danielle F Kennedy, Barbara A Messerle, and Brynn Hibbert. (2008) 2008. “High Throughput Screening Arrays of Rhodium and Iridium Complexes As Catalysts for Intramolecular Hydroamination Using Parallel Factor Analysis.”. The Analyst 133 (6): 817-22. https://doi.org/10.1039/b719501j.

Parallel factor analysis (PARAFAC) was used to analyze data from the high throughput screening of an array of organometallic rhodium and iridium complexes as catalysts for the intramolecular hydroamination of 2-(2-phenylethynyl)aniline to give 2-phenylindole. The progress of the hydroamination reactions was monitored using UV-visible spectroscopy. The overlapped UV-visible spectra of the mixture of starting material, product and solvent in the samples taken at different times were deconvoluted using PARAFAC. Unique PARAFAC models led to close approximations of the actual UV-visible spectra of the compounds in the mixture. The performance of the catalysts was then compared by estimating the final concentration of the starting material and product using PARAFAC loadings. A library of 63 complexes generated in situ was examined in a single experiment using this methodology. The complexes were generated from combinations of seven ligands (bis(N-methyl2-imidazolyl)methane, bis(1-pyrazolyl)methane, 1,10-phenanthroline, N,N'-bis(p-tolyl)diazabutadiene, N,N'-bis(p-tolyl)1,2-dimethyldiazabutadiene, N,N'-bis(mesityl)1,2-dimethyldiazabutadiene and bis(2,4,6-trimethylphenylimino)acenapthene) and nine metal precursors ([Ir(COD)Cl](2) (COD = 1,5-cyclooctadiene), [Ir(CO)(2)Cl](n), [Ir(COE)(2)Cl](2), [IrCp*Cl(2)](2) (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene), [Rh(COD)Cl](2), [Rh(CO)(2)Cl](2), [Rh(COE)(2)Cl](2), [RhCp*Cl(2)](2) and [RhCpCl(2)](2)) (Cp = cyclopentadiene)). The proposed method can be used for the fast screening of arrays of metal complexes for identifying effective catalysts, providing information that can augment traditional methods used for the analysis of catalyzed reactions.