Influenza viruses infect millions of humans every year causing an estimated 400,000 deaths globally. Due to continuous virus evolution current vaccines provide only limited protection against the flu. Several antiviral drugs are available to treat influenza infection, and one of the most commonly used drugs is oseltamivir (Tamiflu). While the mechanism of action of oseltamivir as a neuraminidase inhibitor is well-understood, the impact of oseltamivir on influenza virus dynamics in humans has been controversial. Many clinical trials with oseltamivir have been done by pharmaceutical companies such as Roche but the results of these trials until recently have been provided as summary reports or papers. Typically, such reports included median virus shedding curves for placebo and drug-treated influenza virus infected volunteers often indicating high efficacy of the early treatment. However, median shedding curves may be not accurately representing drug impact in individual volunteers. Importantly, due to public pressure clinical trials data testing oseltamivir efficacy has been recently released in the form of redacted PDF documents. We digitized and re-analyzed experimental data on influenza virus shedding in human volunteers from three previously published trials: on influenza A (1 trial) or B viruses (2 trials). Given that not all volunteers exposed to influenza viruses actually start virus shedding we found that impact of oseltamivir on the virus shedding dynamics was dependent on (i) selection of volunteers that were infected with the virus, and (ii) the detection limit in the measurement assay; both of these details were not well-articulated in the published studies. By assuming that any non-zero viral measurement is above the limit of detection we could match previously published data on median influenza A virus (flu A study) shedding but not on influenza B virus shedding (flu B study B) in human volunteers. Additional analyses confirmed that oseltamivir had an impact on the duration of shedding and overall shedding (defined as area under the curve) but this result varied by the trial. Interestingly, treatment had no impact on the rates at which shedding increased or declined with time in individual volunteers. Additional analyses showed that oseltamivir impacted the kinetics of the end of viral shedding, and in about 20-40% of volunteers that shed the virus treatment had no impact on viral shedding duration. Our results suggest an unusual impact of oseltamivir on influenza viruses shedding kinetics and caution about the use of published median data or data from a few individuals for inferences. Furthermore, we call for the need to publish raw data from critical clinical trials that can be independently analyzed.
Publications
2021
Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.
2020
Plasmodium sporozoites are the infective stage of the malaria parasite. Though this is a bottleneck for the parasite, the quantitative dynamics of transmission, from mosquito inoculation of sporozoites to patent blood-stage infection in the mammalian host, are poorly understood. Here we utilize a rodent model to determine the probability of malaria infection after infectious mosquito bite, and consider the impact of mosquito parasite load, blood-meal acquisition, probe-time, and probe location, on infection probability. We found that infection likelihood correlates with mosquito sporozoite load and, to a lesser degree, the duration of probing, and is not dependent upon the mosquito's ability to find blood. The relationship between sporozoite load and infection probability is non-linear and can be described by a set of models that include a threshold, with mosquitoes harboring over 10,000 salivary gland sporozoites being significantly more likely to initiate a malaria infection. Overall, our data suggest that the small subset of highly infected mosquitoes may contribute disproportionally to malaria transmission in the field and that quantifying mosquito sporozoite loads could aid in predicting the force of infection in different transmission settings.
Antibiotics are the major tool for treating bacterial infections. Rising antibiotic resistance, however, calls for a better use of antibiotics. While classical recommendations favor long and aggressive treatments, more recent clinical trials advocate for moderate regimens. In this debate, two axes of 'aggression' have typically been conflated: treatment intensity (dose) and treatment duration. The third dimension of treatment timing along each individual's infection course has rarely been addressed. By using a generic mathematical model of bacterial infection controlled by immune response, we examine how the relative effectiveness of antibiotic treatment varies with its timing, duration and antibiotic kill rate. We show that short or long treatments may both be beneficial depending on treatment onset, the target criterion for success and on antibiotic efficacy. This results from the dynamic trade-off between immune response build-up and resistance risk in acute, self-limiting infections, and uncertainty relating symptoms to infection variables. We show that in our model early optimal treatments tend to be 'short and strong', while late optimal treatments tend to be 'mild and long'. This suggests a shift in the aggression axis depending on the timing of treatment. We find that any specific optimal treatment schedule may perform more poorly if evaluated by other criteria, or under different host-specific conditions. Our results suggest that major advances in antibiotic stewardship must come from a deeper empirical understanding of bacterial infection processes in individual hosts. To guide rational therapy, mathematical models need to be constrained by data, including a better quantification of personal disease trajectory in humans. Lay summary: Bacterial infections are becoming more difficult to treat worldwide because bacteria are becoming resistant to the antibiotics used. Addressing this problem requires a better understanding of how treatment along with other host factors impact antibiotic resistance. Until recently, most theoretical research has focused on the importance of antibiotic dosing on antibiotic resistance, however, duration and timing of treatment remain less explored. Here, we use a mathematical model of a generic bacterial infection to study three aspects of treatment: treatment dose/efficacy (defined by the antibiotic kill rate), duration, and timing, and their impact on several infection endpoints. We show that short and long treatment success strongly depends on when treatment begins (defined by the symptom threshold), the target criterion to optimize, and on antibiotic efficacy. We find that if administered early in an infection, "strong and short" therapy performs better, while if treatment begins at higher bacterial densities, a "mild and long" course of antibiotics is favored. In the model host immune defenses are key in preventing relapses, controlling antibiotic resistant bacteria and increasing the effectiveness of moderate intervention. In order to improve rational treatments of human infections, we call for a better quantification of individual disease trajectories in bacteria-immunity space.
2019
Multiple lines of evidence indicate that CD8 + T cells are important in the control of HIV-1 (HIV) replication. However, CD8 + T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8 + T-cell responses induced during HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8 + T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8 + T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8 + T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8 + T cells in the chronic infection. The breadth of HIV-specific CD8 + T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8 + T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8 + T-cell responses and the presence of intra- and interclonal competition between multiple CD8 + T-cell responses; such competition may limit the magnitude of CD8 + T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8 + T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.
T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.
The ability of lymphocytes to recirculate between blood and secondary lymphoid tissues such as lymph nodes (LNs) and spleen is well established. Sheep have been used as an experimental system to study lymphocyte recirculation for decades and multiple studies document accumulation and loss of intravenously (i.v.) transferred lymphocytes in efferent lymph of various ovine LNs. Yet, surprisingly little work has been done to accurately quantify the dynamics of lymphocyte exit from the LNs and to estimate the average residence times of lymphocytes in ovine LNs. In this work we developed a series of mathematical models based on fundamental principles of lymphocyte recirculation in the body under non-inflammatory (resting) conditions. Our analysis suggested that in sheep, recirculating lymphocytes spend on average 3 h in the spleen and 20 h in skin or gut-draining LNs with a distribution of residence times in LNs following a skewed gamma (lognormal-like) distribution. Our mathematical models also suggested an explanation for a puzzling observation of the long-term persistence of i.v. transferred lymphocytes in the efferent lymph of the prescapular LN (pLN); the model predicted that this is a natural consequence of long-term persistence of the transferred lymphocytes in circulation. We also found that lymphocytes isolated from the skin-draining pLN have a 2-fold increased entry rate into the pLN as opposed to the mesenteric (gut-draining) LN (mLN). Likewise, lymphocytes from mLN had a 3-fold increased entry rate into the mLN as opposed to entry rate into pLN. In contrast, these cannulation data could not be explained by preferential retention of cells in LNs of their origin. Taken together, our work illustrates the power of mathematical modeling in describing the kinetics of lymphocyte migration in sheep and provides quantitative estimates of lymphocyte residence times in ovine LNs.
Malaria, a disease caused by parasites of the Plasmodium genus, begins when Plasmodium-infected mosquitoes inject malaria sporozoites while searching for blood. Sporozoites migrate from the skin via blood to the liver, infect hepatocytes, and form liver stages which in mice 48 h later escape into blood and cause clinical malaria. Vaccine-induced activated or memory CD8 T cells are capable of locating and eliminating all liver stages in 48 h, thus preventing the blood-stage disease. However, the rules of how CD8 T cells are able to locate all liver stages within a relatively short time period remains poorly understood. We recently reported formation of clusters consisting of variable numbers of activated CD8 T cells around Plasmodium yoelii (Py)-infected hepatocytes. Using a combination of experimental data and mathematical models we now provide additional insights into mechanisms of formation of these clusters. First, we show that a model in which cluster formation is driven exclusively by T-cell-extrinsic factors, such as variability in "attractiveness" of different liver stages, cannot explain distribution of cluster sizes in different experimental conditions. In contrast, the model in which cluster formation is driven by the positive feedback loop (i.e., larger clusters attract more CD8 T cells) can accurately explain the available data. Second, while both Py-specific CD8 T cells and T cells of irrelevant specificity (non-specific CD8 T cells) are attracted to the clusters, we found no evidence that non-specific CD8 T cells play a role in cluster formation. Third and finally, mathematical modeling suggested that formation of clusters occurs rapidly, within few hours after adoptive transfer of CD8 T cells, thus illustrating high efficiency of CD8 T cells in locating their targets in complex peripheral organs, such as the liver. Taken together, our analysis provides novel insights into and attempts to discriminate between alternative mechanisms driving the formation of clusters of antigen-specific CD8 T cells in the liver.
The specific chemokine receptors utilized by Th1 cells to migrate into the lung during Mycobacterium tuberculosis infection are unknown. We previously showed in mice that CXCR3+ Th1 cells enter the lung parenchyma and suppress M. tuberculosis growth, while CX3CR1+ KLRG1+ Th1 cells accumulate in the lung vasculature and are nonprotective. Here we quantify the contributions of these chemokine receptors to the migration and entry rate of Th1 cells into M. tuberculosis-infected lungs using competitive adoptive transfer migration assays and mathematical modeling. We found that in 8.6 h half of M. tuberculosis-specific CD4 T cells migrate from the blood to the lung parenchyma. CXCR3 deficiency decreases the average rate of Th1 cell entry into the lung parenchyma by half, while CX3CR1 deficiency doubles it. KLRG1 blockade has no effect on Th1 cell lung migration. CCR2, CXCR5, and, to a lesser degree, CCR5 and CXCR6 also promote the entry of Th1 cells into the lungs of infected mice. Moreover, blockade of G-protein-coupled receptors with pertussis toxin treatment prior to transfer only partially inhibits T cell migration into the lungs. Thus, the fraction of Th1 cell input into the lungs during M. tuberculosis infection that is regulated by chemokine receptors likely reflects the cumulative effects of multiple chemokine receptors that mostly promote but that can also inhibit entry into the parenchyma.