Publications

2024

Chiem, Kevin, Aitor Nogales, Fernando Almazan, Chengjin Ye, and Luis Martinez-Sobrido. (2024) 2024. “Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2”. Methods in Molecular Biology (Clifton, N.J.) 2733: 133-53. https://doi.org/10.1007/978-1-0716-3533-9_9.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the Coronaviridae family responsible for the coronavirus disease 19 (COVID-19) pandemic. To date, SARS-CoV-2 has been accountable for over 624 million infection cases and more than 6.5 million human deaths. The development and implementation of SARS-CoV-2 reverse genetics approaches have allowed researchers to genetically engineer infectious recombinant (r)SARS-CoV-2 to answer important questions in the biology of SARS-CoV-2 infection. Reverse genetics techniques have also facilitated the generation of rSARS-CoV-2 expressing reporter genes to expedite the identification of compounds with antiviral activity in vivo and in vitro. Likewise, reverse genetics has been used to generate attenuated forms of the virus for their potential implementation as live-attenuated vaccines (LAV) for the prevention of SARS-CoV-2 infection. Here we describe the experimental procedures for the generation of rSARS-CoV-2 using a well-established and robust bacterial artificial chromosome (BAC)-based reverse genetics system. The protocol allows to produce wild-type and mutant rSARS-CoV-2 that can be used to understand the contribution of viral proteins and/or amino acid residues in viral replication and transcription, pathogenesis and transmission, and interaction with cellular host factors.

Nogales, Aitor, Luis Martinez-Sobrido, and Fernando Almazan. (2024) 2024. “Reverse Genetics of Zika Virus Using a Bacterial Artificial Chromosome”. Methods in Molecular Biology (Clifton, N.J.) 2733: 185-206. https://doi.org/10.1007/978-1-0716-3533-9_12.

Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has become a global threat to human health. Although ZIKV has been known to circulate for decades causing mild febrile illness, the more recent ZIKV outbreaks in the Americas and the Caribbean have been associated with severe neurological disorders and congenital abnormalities. The development of ZIKV reverse genetics approaches have allowed researchers to address key questions on the biology of ZIKV by genetically engineering infectious recombinant (r)ZIKV. This has resulted in a better understanding of the biology of ZIKV infections, including viral pathogenesis, molecular mechanisms of viral replication and transcription, or the interaction of viral and host factors, among others aspects. In addition, reverse genetics systems have facilitated the identification of anti-ZIKV compounds and the development of new prophylactic approaches to combat ZIKV infections. Different reverse genetics strategies have been implemented for the recovery of rZIKV. All these reverse genetics systems have faced and overcome multiple challenges, including the viral genome size, the toxicity of viral sequences in bacteria, etc. In this chapter we describe the generation of a ZIKV full-length complementary (c)DNA infectious clone based on the use of a bacterial artificial chromosome (BAC) and the experimental procedures for the successful recovery of rZIKV. Importantly, the protocol described in this chapter provides a powerful method for the generation of infectious clones of other flaviviruses with genomes that have stability problems during bacterial propagation.

Witwit, Haydar, Roaa Khafaji, Arul Salaniwal, Arthur S Kim, Beatrice Cubitt, Nathaniel Jackson, Chengjin Ye, Susan R Weiss, Luis Martinez-Sobrido, and Juan Carlos de la Torre. (2024) 2024. “Activation of Protein Kinase Receptor (PKR) Plays a Pro-Viral Role in Mammarenavirus-Infected Cells”. Journal of Virology 98 (3): e0188323. https://doi.org/10.1128/jvi.01883-23.

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.

Uprety, Tirth, Jieshi Yu, Aitor Nogales, Ahsan Naveed, Hai Yu, Xi Chen, Yunpeng Liu, et al. (2024) 2024. “Influenza D Virus Utilizes Both 9-O-Acetylated N-Acetylneuraminic and 9-O-Acetylated N-Glycolylneuraminic Acids As Functional Entry Receptors”. Journal of Virology 98 (3): e0004224. https://doi.org/10.1128/jvi.00042-24.

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.

Jiao, Yang, Wei-Chiao Huang, Kevin Chiem, Yiting Song, Jingyu Sun, Shubhada K Chothe, Shiqi Zhou, et al. (2024) 2024. “SARS-CoV-2 Protein Nanoparticle Vaccines Formed In Situ From Lyophilized Lipids”. Small (Weinheim an Der Bergstrasse, Germany) 20 (9): e2304534. https://doi.org/10.1002/smll.202304534.

The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.

Martins, Mathias, Mohammed Nooruzzaman, Jessie Lee Cunningham, Chengjin Ye, Leonardo Cardia Caserta, Nathaniel Jackson, Luis Martinez-Sobrido, Ying Fang, and Diego G Diel. (2024) 2024. “The SARS-CoV-2 Spike Is a Virulence Determinant and Plays a Major Role on the Attenuated Phenotype of Omicron Virus in a Feline Model of Infection”. Journal of Virology 98 (3): e0190223. https://doi.org/10.1128/jvi.01902-23.

UNLABELLED: The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus.

IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.

Witwit, Haydar, Roaa Khafaji, Arul Salaniwal, Arthur S Kim, Beatrice Cubitt, Nathaniel Jackson, Chengjin Ye, Susan R Weiss, Luis Martinez-Sobrido, and Juan Carlos de la Torre. (2024) 2024. “Activation of Protein Kinase Receptor (PKR) Plays a Pro-Viral Role in Mammarenavirus-Infected Cells”. Journal of Virology 98 (3): e0188323. https://doi.org/10.1128/jvi.01883-23.

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.

Uprety, Tirth, Jieshi Yu, Aitor Nogales, Ahsan Naveed, Hai Yu, Xi Chen, Yunpeng Liu, et al. (2024) 2024. “Influenza D Virus Utilizes Both 9-O-Acetylated N-Acetylneuraminic and 9-O-Acetylated N-Glycolylneuraminic Acids As Functional Entry Receptors”. Journal of Virology 98 (3): e0004224. https://doi.org/10.1128/jvi.00042-24.

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.

Khalil, Ahmed Magdy, Aitor Nogales, Luis Martinez-Sobrido, and Ahmed Mostafa. (2024) 2024. “Antiviral Responses Versus Virus-Induced Cellular Shutoff: A Game of Thrones Between Influenza A Virus NS1 and SARS-CoV-2 Nsp1”. Frontiers in Cellular and Infection Microbiology 14: 1357866. https://doi.org/10.3389/fcimb.2024.1357866.

Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.

Martins, Mathias, Mohammed Nooruzzaman, Jessie Lee Cunningham, Chengjin Ye, Leonardo Cardia Caserta, Nathaniel Jackson, Luis Martinez-Sobrido, Ying Fang, and Diego G Diel. (2024) 2024. “The SARS-CoV-2 Spike Is a Virulence Determinant and Plays a Major Role on the Attenuated Phenotype of Omicron Virus in a Feline Model of Infection”. Journal of Virology 98 (3): e0190223. https://doi.org/10.1128/jvi.01902-23.

UNLABELLED: The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus.

IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.