Flavivirus

We are interested in understanding the molecular mechanisms of pathogenesis of flavivirus infections, the development of reverse genetics approaches to understand viral factors involved in pathogenesis, and the identification and characterization of effective therapeutics for the treatment of flavivirus infections.

Viral factors involved in pathogenesis

  • Nogales, Aitor, Luis Martinez-Sobrido, and Fernando Almazan. (2024) 2024. “Reverse Genetics of Zika Virus Using a Bacterial Artificial Chromosome.”. Methods in Molecular Biology (Clifton, N.J.) 2733: 185-206. https://doi.org/10.1007/978-1-0716-3533-9_12.

    Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has become a global threat to human health. Although ZIKV has been known to circulate for decades causing mild febrile illness, the more recent ZIKV outbreaks in the Americas and the Caribbean have been associated with severe neurological disorders and congenital abnormalities. The development of ZIKV reverse genetics approaches have allowed researchers to address key questions on the biology of ZIKV by genetically engineering infectious recombinant (r)ZIKV. This has resulted in a better understanding of the biology of ZIKV infections, including viral pathogenesis, molecular mechanisms of viral replication and transcription, or the interaction of viral and host factors, among others aspects. In addition, reverse genetics systems have facilitated the identification of anti-ZIKV compounds and the development of new prophylactic approaches to combat ZIKV infections. Different reverse genetics strategies have been implemented for the recovery of rZIKV. All these reverse genetics systems have faced and overcome multiple challenges, including the viral genome size, the toxicity of viral sequences in bacteria, etc. In this chapter we describe the generation of a ZIKV full-length complementary (c)DNA infectious clone based on the use of a bacterial artificial chromosome (BAC) and the experimental procedures for the successful recovery of rZIKV. Importantly, the protocol described in this chapter provides a powerful method for the generation of infectious clones of other flaviviruses with genomes that have stability problems during bacterial propagation.

  • Ávila-Pérez, Ginés, Aitor Nogales, Verónica Martín, Fernando Almazan, and Luis Martinez-Sobrido. (2018) 2018. “Reverse Genetic Approaches for the Generation of Recombinant Zika Virus.”. Viruses 10 (11). https://doi.org/10.3390/v10110597.

    Zika virus (ZIKV) is an emergent mosquito-borne member of the Flaviviridae family that was responsible for a recent epidemic in the Americas. ZIKV has been associated with severe clinical complications, including neurological disorder such as Guillain-Barré syndrome in adults and severe fetal abnormalities and microcephaly in newborn infants. Given the significance of these clinical manifestations, the development of tools and reagents to study the pathogenesis of ZIKV and to develop new therapeutic options are urgently needed. In this respect, the implementation of reverse genetic techniques has allowed the direct manipulation of the viral genome to generate recombinant (r)ZIKVs, which have provided investigators with powerful systems to answer important questions about the biology of ZIKV, including virus-host interactions, the mechanism of transmission and pathogenesis or the function of viral proteins. In this review, we will summarize the different reverse genetic strategies that have been implemented, to date, for the generation of rZIKVs and the applications of these platforms for the development of replicon systems or reporter-expressing viruses.

  • Ávila-Pérez, Ginés, Jun-Gyu Park, Aitor Nogales, Fernando Almazan, and Luis Martinez-Sobrido. (2019) 2019. “Rescue of Recombinant Zika Virus from a Bacterial Artificial Chromosome CDNA Clone.”. Journal of Visualized Experiments : JoVE, no. 148. https://doi.org/10.3791/59537.

    The association of Zika virus (ZIKV) infection with neurological complications during the recent worldwide outbreak and the lack of approved vaccines and/or antivirals have underscored the urgent need to develop ZIKV reverse genetic systems to facilitate the study of ZIKV biology and the development of therapeutic and/or prophylactic approaches. However, like with other flaviviruses, the generation of ZIKV full-length infectious cDNA clones has been hampered due to the toxicity of viral sequences during its amplification in bacteria. To overcome this problem, we have developed a nontraditional approach based on the use of bacterial artificial chromosomes (BACs). Using this approach, the full-length cDNA copy of the ZIKV strain Rio Grande do Norte Natal (ZIKV-RGN) is generated from four synthetic DNA fragments and assembled into the single-copy pBeloBAC11 plasmid under the control of the human cytomegalovirus (CMV) immediate-early promoter. The assembled BAC cDNA clone is stable during propagation in bacteria, and infectious recombinant (r)ZIKV is recovered in Vero cells after transfection of the BAC cDNA clone. The protocol described here provides a powerful technique for the generation of infectious clones of flaviviruses, including ZIKV, and other positive-strand RNA viruses, particularly those with large genomes that have stability problems during bacterial propagation.

Identification and characterization of effective therapeutics

  • Park, Jun-Gyu, Ginés Ávila-Pérez, Ferralita Madere, Thomas A Hilimire, Aitor Nogales, Fernando Almazan, and Luis Martinez-Sobrido. (2019) 2019. “Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid.”. Frontiers in Microbiology 10: 718. https://doi.org/10.3389/fmicb.2019.00718.

    Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and is responsible for severe congenital abnormalities such as microcephaly in the Western Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being developed for the treatment of ZIKV infections, and as of yet none are commercially available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50) of 13.87 ± 1.09 μM and 33.33 ± 1.13 μM in Vero and A549 cells, respectively; without showing any cytotoxic effect in both cell lines (median cytotoxic concentration (CC50) > 1,000 μM). Moreover, ATA protected both cell types from ZIKV-induced cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner. In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of ATA on ZIKV infection was effective against strains of the African and Asian/American lineages, indicating that this inhibitory effect was not strain dependent. Overall, these results demonstrate that ATA has potent inhibitory activity against ZIKV replication and may be considered as a potential anti-ZIKV therapy for future clinical evaluation.

  • Vasquez, Desarey Morales, Jun-Gyu Park, Ginés Ávila-Pérez, Aitor Nogales, Juan Carlos de la Torre, Fernando Almazan, and Luis Martinez-Sobrido. (2020) 2020. “Identification of Inhibitors of ZIKV Replication.”. Viruses 12 (9). https://doi.org/10.3390/v12091041.

    Zika virus (ZIKV) was identified in 1947 in the Zika forest of Uganda and it has emerged recently as a global health threat, with recurring outbreaks and its associations with congenital microcephaly through maternal fetal transmission and Guillain-Barré syndrome. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or antivirals to treat ZIKV infections, which underscores an urgent medical need for the development of disease intervention strategies to treat ZIKV infection and associated disease. Drug repurposing offers various advantages over developing an entirely new drug by significantly reducing the timeline and resources required to advance a candidate antiviral into the clinic. Screening the ReFRAME library, we identified ten compounds with antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV). Moreover, we showed the ability of these ten compounds to inhibit influenza A and B virus infections, supporting their broad-spectrum antiviral activity. In this study, we further evaluated the broad-spectrum antiviral activity of the ten identified compounds by testing their activity against ZIKV. Among the ten compounds, Azaribine (SI-MTT = 146.29), AVN-944 (SI-MTT = 278.16), and Brequinar (SI-MTT = 157.42) showed potent anti-ZIKV activity in post-treatment therapeutic conditions. We also observed potent anti-ZIKV activity for Mycophenolate mofetil (SI-MTT = 20.51), Mycophenolic acid (SI-MTT = 36.33), and AVN-944 (SI-MTT = 24.51) in pre-treatment prophylactic conditions and potent co-treatment inhibitory activity for Obatoclax (SI-MTT = 60.58), Azaribine (SI-MTT = 91.51), and Mycophenolate mofetil (SI-MTT = 73.26) in co-treatment conditions. Importantly, the inhibitory effect of these compounds was strain independent, as they similarly inhibited ZIKV strains from both African and Asian/American lineages. Our results support the broad-spectrum antiviral activity of these ten compounds and suggest their use for the development of antiviral treatment options of ZIKV infection.