Publications

2020

Martinez-Sobrido, Luis, Pilar Blanco-Lobo, Laura Rodriguez, Theresa Fitzgerald, Hanyuan Zhang, Phuong Nguyen, Christopher S Anderson, et al. (2020) 2020. “Characterizing Emerging Canine H3 Influenza Viruses.”. PLoS Pathogens 16 (4): e1008409. https://doi.org/10.1371/journal.ppat.1008409.

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.

Riva, Laura, Shuofeng Yuan, Xin Yin, Laura Martin-Sancho, Naoko Matsunaga, Sebastian Burgstaller-Muehlbacher, Lars Pache, et al. (2020) 2020. “A Large-Scale Drug Repositioning Survey for SARS-CoV-2 Antivirals.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.04.16.044016.

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.

Viswanathan, Thiruselvam, Shailee Arya, Siu-Hong Chan, Shan Qi, Nan Dai, Robert A Hromas, Jun-Gyu Park, Fatai Oladunni, Luis Martinez-Sobrido, and Yogesh K Gupta. (2020) 2020. “Structural Basis of RNA Cap Modification by SARS-CoV-2 Coronavirus.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.04.26.061705.

The novel severe acute respiratory syndrome coronoavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused over 2 million infections worldwide in four months. In SARS coronaviruses, the non-structural protein 16 (nsp16) methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of full-length nsp16 and nsp10 of SARS-CoV-2 in the presence of cognate RNA substrate and a methyl donor, S-adenosyl methionine. The nsp16/nsp10 heterodimer was captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We reveal large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This structure provides new mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discovered a distantly located ligand-binding site unique to SARS-CoV-2 that may serve as an alternative target site for antiviral development.

Martinez-Sobrido, Luis, Marta L DeDiego, and Aitor Nogales. (2020) 2020. “AGL2017-82570-RReverse Genetics Approaches for the Development of New Vaccines Against Influenza A Virus Infections.”. Current Opinion in Virology 44: 26-34. https://doi.org/10.1016/j.coviro.2020.06.001.

Influenza A viruses (IAVs) represent a serious concern globally because they are capable of rapid spread and cause severe disease in humans and other animals. The development and implementation of plasmid-based reverse genetics approaches have allowed the manipulation and recovery of recombinant IAVs from complementary DNA copies of the viral genome. Furthermore, IAV reverse genetics have provided researchers an efficient and powerful platform to introduce specific changes in the viral genome with the final goal of studying IAV biology, designing more effective vaccine strategies, and to reduce the rates of incidence and mortality associated with viral infections. In this review, we briefly discuss IAV reverse genetics and their applications to prevent IAV infections.

Amanat, Fatima, Kris M White, Lisa Miorin, Shirin Strohmeier, Meagan McMahon, Philip Meade, Wen-Chun Liu, et al. (2020) 2020. “An In Vitro Microneutralization Assay for SARS-CoV-2 Serology and Drug Screening.”. Current Protocols in Microbiology 58 (1): e108. https://doi.org/10.1002/cpmc.108.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the city of Wuhan, Hubei Province, China, in late 2019. Since then, the virus has spread globally and caused a pandemic. Assays that can measure the antiviral activity of antibodies or antiviral compounds are needed for SARS-CoV-2 vaccine and drug development. Here, we describe in detail a microneutralization assay, which can be used to assess in a quantitative manner if antibodies or drugs can block entry and/or replication of SARS-CoV-2 in vitro. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Microneutralization assay to test inhibition of virus by antibodies (purified antibodies or serum/plasma) Basic Protocol 2: Screening of anti-SARS-CoV-2 compounds in vitro Support Protocol: SARS-CoV-2 propagation.

Ye, Chengjin, Juan Carlos de la Torre, and Luis Martinez-Sobrido. (2020) 2020. “Development of Reverse Genetics for the Prototype New World Mammarenavirus Tacaribe Virus.”. Journal of Virology 94 (19). https://doi.org/10.1128/JVI.01014-20.

The New World mammarenavirus Tacaribe virus (TCRV) has been isolated from fruit bats, mosquitoes, and ticks, whereas all other known New World mammarenaviruses are maintained in rodents. TCRV has not been linked to human disease, but it has been shown to protect against Argentine hemorrhagic fever-like disease in marmosets infected with the New World mammarenavirus Junín virus (JUNV), indicating the potential of TCRV as a live-attenuated vaccine for the treatment of Argentine hemorrhagic fever. Implementation of TCRV as a live-attenuated vaccine or a vaccine vector would be facilitated by the establishment of reverse genetics systems for the genetic manipulation of the TCRV genome. In this study, we developed, for the first time, reverse genetics approaches for the generation of recombinant TCRV (rTCRV). We successfully rescued a wild-type (WT) rTCRV (a trisegmented form of TCRV expressing two reporter genes [r3TCRV]) and a bisegmented TCRV expressing a single reporter gene from a bicistronic viral mRNA (rTCRV/GFP). These reverse genetics approaches represent an excellent tool to investigate the biology of TCRV and to explore its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of other viral infections. Notably, we identified a 39-nucleotide (nt) deletion (Δ39) in the noncoding intergenic region (IGR) of the viral large (L) segment that is required for optimal virus multiplication. Accordingly, an rTCRV containing this 39-nt deletion in the L-IGR (rTCRV/Δ39) exhibited decreased viral fitness in cultured cells, suggesting the feasibility of using this deletion in the L-IGR as an approach to attenuate TCRV, and potentially other mammarenaviruses, for their implementation as live-attenuated vaccines or vaccine vectors.IMPORTANCE To date, no Food and Drug Administration (FDA)-approved vaccines are available to combat hemorrhagic fever caused by mammarenavirus infections in humans. Treatment of mammarenavirus infections is limited to the off-label use of ribavirin, which is partially effective and associated with significant side effects. Tacaribe virus (TCRV), the prototype member of the New World mammarenaviruses, is nonpathogenic in humans but able to provide protection against Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever, demonstrating the feasibility of using TCRV as a live-attenuated vaccine vector for the treatment of JUNV and potentially other viral infections. Here, we describe for the first time the feasibility of generating recombinant TCRV (rTCRV) using reverse genetics approaches, which paves the way to study the biology of TCRV and also its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of mammarenavirus and/or other viral infections in humans.

Ye, Chengjin, Juan C de la Torre, and Luis Martinez-Sobrido. (2020) 2020. “Reverse Genetics Approaches for the Development of Mammarenavirus Live-Attenuated Vaccines.”. Current Opinion in Virology 44: 66-72. https://doi.org/10.1016/j.coviro.2020.06.011.

Several mammarenaviruses can cause severe hemorrhagic fever disease with a very high case fatality rate, representing important threats to human health within the viruses' endemic regions. To date, there are no United States (US) Food and Drug Administration (FDA)-licensed vaccines available to combat mammarenavirus infections in humans, and current anti-mammarenavirus therapy is limited to off-label use of the guanosine analog ribavirin, which has limited efficacy and has been associated with significant side effects. Vaccination is one of the most effective ways to prevent viral diseases, and live-attenuated vaccines (LAVs) have been shown to often provide long-term protection against a subsequent natural infection by the corresponding virulent form of the virus. The development of mammarenavirus reverse genetics systems has provided investigators with a powerful approach for the investigation of the molecular and cell biology of mammarenaviruses and also for the generation of recombinant viruses containing predetermined mutations in their genome for their implementation as LAVs for the treatment of mammarenavirus infections. In this review, we summarize the current knowledge on the mammarenavirus molecular and cell biology, and the use of reverse genetic approaches for the generation of recombinant mammarenaviruses. Moreover, we briefly discus some novel LAV approaches for the treatment of mammarenavirus infections based on the use of reverse genetics approaches.

Yang, Hui, and Chengjin Ye. (2020) 2020. “Reverse Genetics Approaches for Live-Attenuated Vaccine Development of Infectious Bursal Disease Virus.”. Current Opinion in Virology 44: 139-44. https://doi.org/10.1016/j.coviro.2020.08.001.

Infectious bursal disease (IBD), which is caused by infectious bursal disease virus (IBDV) infection, leads to severe immunosuppression in young chickens and results in significant economic losses in the poultry industry. To date, vaccination with live-attenuated vaccine (LAV) is a convenient method to provide effective protection against IBDV infection. Classical attenuated viruses are usually obtained by either passaging virus in cultured cells or natural isolation. However, these empiric attenuation methods, which are time-consuming and not guaranteed, are not reliable for emergent antigenic variant and very virulent IBDV strains. The reverse genetics (RG) system opens a new avenue for the development of IBDV LAV. In this review, we summarize the current knowledge on the biological characteristics of IBDV structure and genome organization, as well as the established RG systems. We also describe the details for the strategies used to develop IBDV LAV based on the RG systems.

Gorshkov, Kirill, Catherine Z Chen, Juan Carlos de la Torre, Luis Martinez-Sobrido, Thomas Moran, and Wei Zheng. (2020) 2020. “Development of a High-Throughput Homogeneous AlphaLISA Drug Screening Assay for the Detection of SARS-CoV-2 Nucleocapsid.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.08.20.258129.

The coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is in urgent need of therapeutic options. High-throughput screening (HTS) offers the research field an opportunity to rapidly identify such compounds. In this work, we have developed a homogeneous cell-based HTS system using AlphaLISA detection technology for the SARS-CoV-2 nucleocapsid protein (NP). Our assay measures both recombinant NP and endogenous NP from viral lysates and tissue culture supernatants (TCS) in a sandwich-based format using two monoclonal antibodies against the NP analyte. Viral NP was detected and quantified in both tissue culture supernatants and cell lysates, with large differences observed between 24 hours and 48 hours of infection. We simulated the viral infection by spiking in recombinant NP into 384-well plates with live Vero-E6 cells and were able to detect the NP with high sensitivity and a large dynamic range. Anti-viral agents that inhibit either viral cell entry or replication will decrease the AlphaLISA NP signal. Thus, this assay can be used for high-throughput screening of small molecules and biologics in the fight against the COVID-19 pandemic.

Gorshkov, Kirill, Catherine Z Chen, Miao Xu, Juan Carlos de la Torre, Luis Martinez-Sobrido, Thomas Moran, and Wei Zheng. (2020) 2020. “Development of a High-Throughput Homogeneous AlphaLISA Drug Screening Assay for the Detection of SARS-CoV-2 Nucleocapsid.”. ACS Pharmacology & Translational Science 3 (6): 1233-41. https://doi.org/10.1021/acsptsci.0c00122.

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in urgent need of therapeutic options. High-throughput screening (HTS) offers an opportunity to rapidly identify such compounds. In this work, we have developed a homogeneous cell-based HTS system using AlphaLISA detection technology for the SARS-CoV-2 nucleocapsid protein (NP). Our assay measures both recombinant and endogenous NP from viral lysates and tissue culture supernatants (TCS) in a sandwich-based format using two monoclonal antibodies against the NP analyte. Viral NP was detected and quantified in both tissue culture supernatants and cell lysates, with large differences observed between 24 and 48 h of infection. We simulated viral infection by spiking recombinant NP into 384-well plates with live Vero-E6 cells and were able to detect the NP with high sensitivity and a large dynamic range. Antiviral agents that inhibit either viral cell entry or replication decrease the AlphaLISA NP signal. Thus, this assay can be used for high-throughput screening of small molecules and biologics in the fight against the COVID-19 pandemic.