The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs.
Publications
2015
UNLABELLED: Arenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NP(CD)) that showed attenuated growth kinetics in vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NP(CD1) and rLCMV/NP(CD2) were highly attenuated in vivo but, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NP(CD1) and rLCMV/NP(CD2) were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses.
IMPORTANCE: Several arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral nucleoproteins (rLCMV/NP(CD)). We identified rLCMV/NP(CD1) and rLCMV/NP(CD2) to be highly attenuated in vivo but able to confer protection against a subsequent lethal challenge with wild-type LCMV. These viruses displayed an attenuated phenotype during serial amplification passages in cultured cells. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated arenavirus vaccines.
UNLABELLED: Several members of the Arenaviridae family cause hemorrhagic fever disease in humans and pose serious public health problems in their geographic regions of endemicity as well as a credible biodefense threat. To date, there have been no FDA-approved arenavirus vaccines, and current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. Arenaviruses are enveloped viruses with a bisegmented negative-stranded RNA genome. Each genome segment uses an ambisense coding strategy to direct the synthesis of two viral polypeptides in opposite orientations, separated by a noncoding intergenic region. Here we have used minigenome-based approaches to evaluate expression levels of reporter genes from the nucleoprotein (NP) and glycoprotein precursor (GPC) loci within the S segment of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). We found that reporter genes are expressed to higher levels from the NP than from the GPC locus. Differences in reporter gene expression levels from the NP and GPC loci were confirmed with recombinant trisegmented LCM viruses. We then used reverse genetics to rescue a recombinant LCMV (rLCMV) containing a translocated viral S segment (rLCMV/TransS), where the viral NP and GPC open reading frames replaced one another. The rLCMV/TransS showed slower growth kinetics in cultured cells and was highly attenuated in vivo in a mouse model of lethal LCMV infection, but immunization with rLCMV/TransS conferred complete protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV/TransS was associated with reduced NP expression levels. These results open a new avenue for the development of arenavirus live attenuated vaccines based on rearrangement of their viral genome.
IMPORTANCE: Several arenaviruses cause severe hemorrhagic fever in humans and also pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections and antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and associated with side effects. Here we describe, for the first time, the generation of a recombinant LCMV where the viral protein products encoded by the S RNA segment (NP and GPC) were swapped to generate rLCMV/TransS. rLCMV/TransS exhibited reduced viral multiplication in cultured cells and was highly attenuated in vivo while conferring protection, upon a single immunization dose, against a lethal challenge with wild-type LCMV. Our studies provide a proof of concept for the rational development of safe and protective live attenuated vaccine candidates based on genome reorganization for the treatment of pathogenic arenavirus infections in humans.
UNLABELLED: Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs.
IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.
Vaccination represents the best option to protect humans against influenza virus. However, improving the effectiveness of current vaccines could better stifle the health burden caused by viral infection. Protein synthesis from individual genes can be downregulated by synthetically deoptimizing a gene's codon usage. With more rapid and affordable nucleotide synthesis, generating viruses that contain genes with deoptimized codons is now feasible. Attenuated, vaccine-candidate viruses can thus be engineered with hitherto uncharacterized properties. With eight gene segments, influenza A viruses with variably recoded genomes can produce a spectrum of attenuation that is contingent on the gene segment targeted and the number of codon changes. This review summarizes different targets and approaches to deoptimize influenza A virus codons for novel vaccine generation.
Avian-derived influenza A zoonoses are closely monitored and may be an indication of virus strains with pandemic potential. Both successful vaccination and convalescence of influenza A virus in humans typically results in the induction of antibodies that can neutralize viral infection. To improve long-standing and new-generation methodologies for detection of neutralizing antibodies, we have employed a novel reporter-based approach that allows for multiple antigenic testing within a single sample. Central to this approach is a single-cycle infectious influenza A virus (sciIAV), where a functional hemagglutinin (HA) gene was changed to encode either the green or the monomeric red fluorescent protein (GFP and mRFP, respectively) and HA is complemented in trans by stable HA-expressing cell lines. By using fluorescent proteins with non-overlapping emission spectra, this novel bivalent fluorescence-based microneutralization assay (BiFMA) can be used to detect neutralizing antibodies against two distinct influenza isolates in a single reaction, doubling the speed of experimentation while halving the amount of sera required. Moreover, this approach can be used for the rapid identification of influenza broadly neutralizing antibodies. Importantly, this novel BiFMA can be used for any given influenza HA-pseudotyped virus under BSL-2 facilities, including highly pathogenic influenza HA isolates.
Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections.
Autophagy is an essential component of host innate and adaptive immunity. Viruses have developed diverse strategies for evading or utilizing autophagy for survival. The response of the autophagy pathways to virus invasion is poorly documented. Here, we report on the induction of autophagy initiated by the pathogen receptor HSP90AA1 (heat shock protein 90 kDa α [cytosolic], class A member 1) via the AKT-MTOR (mechanistic target of rapamycin)-dependent pathway. Transmission electron microscopy and confocal microscopy revealed that intracellular autolysosomes packaged avibirnavirus particles. Autophagy detection showed that early avibirnavirus infection not only increased the amount of light chain 3 (LC3)-II, but also upregulated AKT-MTOR dephosphorylation. HSP90AA1-AKT-MTOR knockdown by RNA interference resulted in inhibition of autophagy during avibirnavirus infection. Virus titer assays further verified that autophagy inhibition, but not induction, enhanced avibirnavirus replication. Subsequently, we found that HSP90AA1 binding to the viral protein VP2 resulted in induction of autophagy and AKT-MTOR pathway inactivation. Collectively, our findings suggest that the cell surface protein HSP90AA1, an avibirnavirus-binding receptor, induces autophagy through the HSP90AA1-AKT-MTOR pathway in early infection. We reveal that upon viral recognition, a direct connection between HSP90AA1 and the AKT-MTOR pathway trigger autophagy, a critical step for controlling infection.
Background. Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods. Serum of 1349 healthcare personnel (HCP) electing or declining the 2010-2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results. In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009-2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions. Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity.
Recent studies have shown that live attenuated influenza vaccines (LAIVs) expressing avian influenza virus hemagglutinins (HAs) prime for strong protective antibody responses to an inactivated influenza vaccine (IIV) containing the HA. To better understand this priming effect, we compared H7 HA head and stalk domain-specific B-cell responses in H7N7 LAIV-primed subjects and non-H7-primed controls after a single dose of H7N7 IIV. As previously reported, H7N7 LAIV-primed subjects but not control subjects generated strong hemagglutination-inhibiting and neutralizing antibody responses to the H7N7 IIV. Here, we found that the quantity, epitope diversity, and affinity of H7 head-specific antibodies increased rapidly in only H7N7 LAIV-primed subjects after receipt of the IIV. However, all cohorts generated a vigorous, high-affinity, stalk-specific antibody response. Consistent increases in circulating memory B-cell frequencies after receipt of the IIV reflected the specificity of high-affinity antibody production. Our findings emphasize the value of LAIVs as a vehicle for prepandemic vaccination.