Non-Vesicular Extracellular Particle (NVEP) Proteomes from Diverse Biological Sources Reveal Specific Marker Composition with Varying Enrichment Levels.

Naushad, Wasifa, Bryson C Okeoma, Carlos Gartner, Yulica Santos-Ortega, Calvin P H Vary, Lakmini S Premadasa, Alessio Noghero, et al. 2025. “Non-Vesicular Extracellular Particle (NVEP) Proteomes from Diverse Biological Sources Reveal Specific Marker Composition With Varying Enrichment Levels.”. Biomolecules 15 (11).

Abstract

Extracellular particles (EPs), an umbrella term encompassing membrane-enclosed extracellular vesicles (EVs) and non-vesicular extracellular particles ([NVEPs], previously described as extracellular condensates [ECs]) contain a complex cargo of biomolecules, including DNA, RNA, proteins, and lipids, reflecting the physiological state of their cell of origin. Identifying proteins associated with EPs that regulate host responses to physiological and pathophysiological processes is of critical importance. Here, we report the findings of our study to gain insight into the proteins associated with NVEPs. We used samples from human semen, the rat brain, and the rhesus macaque (RM) brain and blood to assess the physical properties and proteome profiles of NVEPs from these specimens. The results show significant differences in the zeta potential, concentration, and size of NVEPs across different species. We identified 938, 51, and 509 total proteins from NVEPs isolated from rat brain tissues, RM blood, and human seminal plasma, respectively. The species-specific protein networks show distinct biological themes, while the species-conserved protein interactome was identified with six proteins (ALB, CST3, FIBA/FGA, GSTP1, PLMN/PLG, PPIA) associated with NVEPs in all samples. The six NVEP-associated proteins are prone to aggregation and formation of wide, insoluble, unbranched filaments with a cross-beta sheet quaternary structure, such as amyloid fibrils. Protein-to-function analysis indicates that the six identified proteins are linked to the release of dopamine, immune-mediated inflammatory disease, replication of RNA viruses, HIV-HCV co-infection, and inflammation. These interesting findings have created an opportunity to evaluate NVEPs for their potential use as biomarkers of health and disease. Additional in-depth studies are needed to clarify when and how these proteins sustain their physiological role or transition to pathogenic roles.

Last updated on 11/27/2025
PubMed