Alveolar macrophages (AMs) are exposed to frequent challenges from inhaled particulates and microbes and function as a first line of defense with a highly regulated immune response because of their unique biology as prototypic alternatively activated macrophages. Lung collectins, particularly surfactant protein A (SP-A), contribute to this activation state by fine-tuning the macrophage inflammatory response. During short-term (10 min-2 h) exposure, SP-A's regulation of human macrophage responses occurs through decreased activity of kinases required for proinflammatory cytokine production. However, AMs are continuously exposed to surfactant, and the biochemical pathways underlying long-term reduction of proinflammatory cytokine activity are not known. We investigated the molecular mechanism(s) underlying SP-A- and surfactant lipid-mediated suppression of proinflammatory cytokine production in response to Toll-like receptor (TLR) 4 (TLR4) activation over longer time periods. We found that exposure of human macrophages to SP-A for 6-24 h upregulates expression of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR-mediated NF-κB activation. Exposure to Survanta, a natural bovine lung extract lacking SP-A, also enhances IRAK-M expression, but at lower magnitude and for a shorter duration than SP-A. Surfactant-mediated upregulation of IRAK-M in macrophages suppresses TLR4-mediated TNF-α and IL-6 production in response to LPS, and IRAK-M knockdown by small interfering RNA reverses this suppression. In contrast to TNF-α and IL-6, the surfactant components upregulate LPS-mediated immunoregulatory IL-10 production, an effect reversed by IRAK-M knockdown. In conclusion, these data identify an important signaling regulator in human macrophages that is used by surfactant to control the long-term alveolar inflammatory response, i.e., enhanced IRAK-M activity.
Publications
2012
Members of the Mycobacterium avium complex (MAC) are naturally occurring bacteria in the environment. A link has been suggested between M. avium strains in drinking water and clinical isolates from infected individuals. There is a need to develop new screening methodologies that can identify specific virulence properties of M. avium isolates found in water that predict a level of risk to exposed individuals. In this work we have characterized 15 clinical and environmental M. avium spp. isolates provided by the US Environmental Protection Agency (EPA) to improve our understanding of the key processes involved in the binding, uptake and survival of these isolates in primary human macrophages. M. avium serovar 8 was predominant among the isolates studied. Different amounts and exposure of mannose-capped lipoarabinomannan (ManLAM) and glycopeptidolipids (GPLs), both major mycobacterial virulence factors, were found among the isolates studied. Reference clinical isolate 104 serovar 1 and clinical isolates 11 and 14 serovar 8 showed an increased association with macrophages. Serum opsonization increased the cell association and survival at 2 h post infection for all isolates. However, only the clinical isolates 104 and 3 among those tested showed an increased growth in primary human macrophages. The other isolates varied in their survival in these cells. Thus we conclude that the amounts of cell envelope ManLAM and GPL, as well as GPL serovar specificity are not the only important bacterial factors for dictating the early interactions of M. avium with human macrophages.
Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl(++)). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl(++) variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl(++) bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa.
Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.
Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.
Francisella tularensis is a remarkably infectious facultative intracellular pathogen that causes the zoonotic disease tularemia. Essential to the pathogenesis of F. tularensis is its ability to escape the destructive phagosomal environment and inhibit the host cell respiratory burst. F. tularensis subspecies encode a series of acid phosphatases, which have been reported to play important roles in Francisella phagosomal escape, inhibition of the respiratory burst, and intracellular survival. However, rigorous demonstration of acid phosphatase secretion by intracellular Francisella has not been shown. Here, we demonstrate that AcpA, which contributes most of the F. tularensis acid phosphatase activity, is secreted into the culture supernatant in vitro by F. novicida and F. tularensis subsp. holarctica LVS. In addition, both F. novicida and the highly virulent F. tularensis subsp. tularensis Schu S4 strain are able to secrete and also translocate AcpA into the host macrophage cytosol. This is the first evidence of acid phosphatase translocation during macrophage infection, and this knowledge will greatly enhance our understanding of the functions of these enzymes in Francisella pathogenesis.
MiR-155 regulates numerous aspects of innate and adaptive immune function. This miR is induced in response to Toll-like receptor ligands, cytokines, and microbial infection. We have previously shown that miR-155 is induced in monocytes/macrophages infected with Francisella tularensis and suppresses expression of the inositol phosphatase SHIP to enhance activation of the PI3K/Akt pathway, which in turn promotes favorable responses for the host. Here we examined how miR-155 expression is regulated during infection. First, our data demonstrate that miR-155 can be induced through soluble factors of bacterial origin and not the host. Second, miR-155 induction is not a direct effect of infection and it requires NF-κB signaling to up-regulate fos/jun transcription factors. Finally, we demonstrate that the requirement for NF-κB-dependent de novo protein synthesis is globally shared by microbial ligands and live bacteria. This study provides new insight into the complex regulation of miR-155 during microbial infection.
2011
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.
Mycobacterium tuberculosis (M.tb), which causes tuberculosis, is a host-adapted intracellular pathogen of macrophages. Intracellular pattern recognition receptors in macrophages such as nucleotide-binding oligomerization domain (NOD) proteins regulate pro-inflammatory cytokine production. NOD2-mediated signalling pathways in response to M.tb have been studied primarily in mouse models and cell lines but not in primary human macrophages. Thus we sought to determine the role of NOD2 in regulating cytokine production and growth of virulent M.tb and attenuated Mycobacterium bovis BCG (BCG) in human macrophages. We examined NOD2 expression during monocyte differentiation and observed a marked increase in NOD2 transcript and protein following 2-3 days in culture. Pre-treatment of human monocyte-derived and alveolar macrophages with the NOD2 ligand muramyl dipeptide enhanced production of TNF-α and IL-1β in response to M.tb and BCG in a RIP2-dependent fashion. The NOD2-mediated cytokine response was significantly reduced following knock-down of NOD2 expression by using small interfering RNA (siRNA) in human macrophages. Finally, NOD2 controlled the growth of both M.tb and BCG in human macrophages, whereas controlling only BCG growth in murine macrophages. Together, our results provide evidence that NOD2 is an important intracellular receptor in regulating the host response to M.tb and BCG infection in human macrophages.
Mycobacterium tuberculosis contains mannosylated cell wall components which are important in macrophage recognition and response. The building block for the mannosyl constituents of these components is GDP-mannose, which is synthesized through a series of enzymes involved in the mannose donor biosynthesis pathway. Nothing is known about the expression levels of the genes encoding these enzymes during the course of infection. To generate transcriptional profiles for the mannose donor biosynthesis genes from virulent M. tuberculosis and attenuated Mycobacterium bovis BCG, bacteria were grown in broth culture and within human macrophages. Our results with broth-grown bacteria show that there are differences in expression of the selected genes between M. tuberculosis and BCG, with increased expression of manC in M. tuberculosis and manA in BCG during stationary-phase growth. Results for M. tuberculosis extracted from within macrophages show that whiB2 is highly expressed and manB and manC are moderately expressed during infection. Rv3256c, Rv3258c, and ppm1 have high expression levels early and decreased expression as the infection progresses. Results with BCG show that, as in M. tuberculosis, whiB2 is highly expressed throughout infection, whereas there is either low expression or little change in expression of the remaining genes studied. Overall, our results show that there is differential regulation of expression of several genes in the mannose donor biosynthesis pathway of M. tuberculosis and BCG grown in broth and within macrophages, raising the possibility that the level of mannose donors may vary during the course of infection and thereby impact the biosynthesis of mannose-containing cell wall molecules.