Publications

2024

Olmo-Fontánez, Angélica M, Julia M Scordo, Alyssa Schami, Andreu Garcia-Vilanova, Paula A Pino, Amberlee Hicks, Richa Mishra, et al. (2024) 2024. “Human Alveolar Lining Fluid from the Elderly Promotes Mycobacterium Tuberculosis Intracellular Growth and Translocation into the Cytosol of Alveolar Epithelial Cells”. Mucosal Immunology. https://doi.org/10.1016/j.mucimm.2024.01.001.

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.

Arnett, Eusondia, Jade Wolff, Chrissy M Leopold Wager, Jan Simper, Jeanine L Badrak, Carlos O Ontiveros, Bin Ni, and Larry S Schlesinger. (2024) 2024. “Cutting Edge: Cytosolic Receptor AIM2 Is Induced by Peroxisome Proliferator-Activated Receptor γ Following Mycobacterium Tuberculosis Infection of Human Macrophages But Does Not Contribute to IL-1β Release”. Journal of Immunology (Baltimore, Md. : 1950) 212 (5): 765-70. https://doi.org/10.4049/jimmunol.2300418.

AIM2 (absent in melanoma 2), an inflammasome component, mediates IL-1β release in murine macrophages and cell lines. AIM2 and IL-1β contribute to murine control of Mycobacterium tuberculosis (M.tb) infection, but AIM2's impact in human macrophages, the primary niche for M.tb, remains unclear. We show that M.tb, Mycobacterium bovis bacillus Calmette-Guérin (BCG), and M. smegmatis induce AIM2 expression in primary human macrophages. M.tb-induced AIM2 expression is peroxisome proliferator-activated receptor γ (PPARγ)-dependent and M.tb ESX-1-independent, whereas BCG- and M. smegmatis-induced AIM2 expression is PPARγ-independent. PPARγ and NLRP3, but not AIM2, are important for IL-1β release in response to M.tb, and NLRP3 colocalizes with M.tb. This is in contrast to the role for AIM2 in inflammasome activation in mice and peritoneal macrophages. Altogether, we show that mycobacteria induce AIM2 expression in primary human macrophages, but AIM2 does not contribute to IL-1β release during M.tb infection, providing further evidence that AIM2 expression and function are regulated in a cell- and/or species-specific manner.

Neehus, Anna-Lena, Brenna Carey, Marija Landekic, Patricia Panikulam, Gail Deutsch, Masato Ogishi, Carlos A Arango-Franco, et al. (2024) 2024. “Human Inherited CCR2 Deficiency Underlies Progressive Polycystic Lung Disease”. Cell 187 (2): 390-408.e23. https://doi.org/10.1016/j.cell.2023.11.036.

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.

Akhter, Anwari, Juan I Moliva, Abul K Azad, Angélica Olmo-Fontánez, Andreu Garcia-Vilanova, Julia M Scordo, Mikhail A Gavrilin, et al. (2024) 2024. “HIV Infection Impairs the Host Response to Mycobacterium Tuberculosis Infection by Altering Surfactant Protein D Function in the Human Lung Alveolar Mucosa”. Mucosal Immunology. https://doi.org/10.1016/j.mucimm.2023.12.003.

Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.

2023

Arnett, Eusondia, Susanta Pahari, Chrissy M Leopold Wager, Elizabeth Hernandez, Jordan R Bonifacio, Miranda Lumbreras, Charles Renshaw, Maria J Montoya, Joseph T Opferman, and Larry S Schlesinger. (2023) 2023. “Combination of MCL-1 and BCL-2 Inhibitors Is a Promising Approach for a Host-Directed Therapy for Tuberculosis”. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 168: 115738. https://doi.org/10.1016/j.biopha.2023.115738.

Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.

Pahari, Susanta, Eusondia Arnett, Jan Simper, Abul Azad, Israel Guerrero-Arguero, Chengjin Ye, Hao Zhang, et al. (2023) 2023. “A New Tractable Method for Generating Human Alveolar Macrophage-Like Cells in Vitro to Study Lung Inflammatory Processes and Diseases”. MBio 14 (4): e0083423. https://doi.org/10.1128/mbio.00834-23.

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-β, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines. IMPORTANCE Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

Sadee, Wolfgang, Ian H Cheeseman, Audrey Papp, Maciej Pietrzak, Michal Seweryn, Xiaofei Zhou, Shili Lin, et al. (2023) 2023. “Human Alveolar Macrophage Response to Mycobacterium Tuberculosis: Immune Characteristics Underlying Large Inter-Individual Variability”. Research Square. https://doi.org/10.21203/rs.3.rs-2986649/v1.

Background: Mycobacterium tuberculosis ( M.tb) , the causative bacterium of tuberculosis (TB), establishes residence and grows in human alveolar macrophages (AMs). Inter-individual variation in M.tb -human AM interactions can indicate TB risk and the efficacy of therapies and vaccines; however, we currently lack an understanding of the gene and protein expression programs that dictate this variation in the lungs. Results: Herein, we systematically analyze interactions of a virulent M.tb strain H 37 R v with freshly isolated human AMs from 28 healthy adult donors, measuring host RNA expression and secreted candidate proteins associated with TB pathogenesis over 72h. A large set of genes possessing highly variable inter-individual expression levels are differentially expressed in response to M.tb infection . Eigengene modules link M.tb growth rate with host transcriptional and protein profiles at 24 and 72h. Systems analysis of differential RNA and protein expression identifies a robust network with IL1B , STAT1 , and IDO1 as hub genes associated with M.tb growth. RNA time profiles document stimulation towards an M1-type macrophage gene expression followed by emergence of an M2-type profile. Finally, we replicate these results in a cohort from a TB-endemic region, finding a substantial portion of significant differentially expressed genes overlapping between studies. Conclusions: We observe large inter-individual differences in bacterial uptake and growth, with tenfold variation in M.tb load by 72h.The fine-scale resolution of this work enables the identification of genes and gene networks associated with early M.tb growth dynamics in defined donor clusters, an important step in developing potential biological indicators of individual susceptibility to M.tb infection and response to therapies.

Wager, Chrissy M Leopold, Jordan R Bonifacio, Jan Simper, Adrian A Naoun, Eusondia Arnett, and Larry S Schlesinger. (2023) 2023. “Activation of Transcription Factor CREB in Human Macrophages by Mycobacterium Tuberculosis Promotes Bacterial Survival, Reduces NF-KB Nuclear Transit and Limits Phagolysosome Fusion by Reduced Necroptotic Signaling”. PLoS Pathogens 19 (3): e1011297. https://doi.org/10.1371/journal.ppat.1011297.

Macrophages are a first line of defense against pathogens. However, certain invading microbes modify macrophage responses to promote their own survival and growth. Mycobacterium tuberculosis (M.tb) is a human-adapted intracellular pathogen that exploits macrophages as an intracellular niche. It was previously reported that M.tb rapidly activates cAMP Response Element Binding Protein (CREB), a transcription factor that regulates diverse cellular responses in macrophages. However, the mechanism(s) underlying CREB activation and its downstream roles in human macrophage responses to M.tb are largely unknown. Herein we determined that M.tb-induced CREB activation is dependent on signaling through MAPK p38 in human monocyte-derived macrophages (MDMs). Using a CREB-specific inhibitor, we determined that M.tb-induced CREB activation leads to expression of immediate early genes including COX2, MCL-1, CCL8 and c-FOS, as well as inhibition of NF-kB p65 nuclear localization. These early CREB-mediated signaling events predicted that CREB inhibition would lead to enhanced macrophage control of M.tb growth, which we observed over days in culture. CREB inhibition also led to phosphorylation of RIPK3 and MLKL, hallmarks of necroptosis. However, this was unaccompanied by cell death at the time points tested. Instead, bacterial control corresponded with increased colocalization of M.tb with the late endosome/lysosome marker LAMP-1. Increased phagolysosomal fusion detected during CREB inhibition was dependent on RIPK3-induced pMLKL, indicating that M.tb-induced CREB signaling limits phagolysosomal fusion through inhibition of the necroptotic signaling pathway. Altogether, our data show that M.tb induces CREB activation in human macrophages early post-infection to create an environment conducive to bacterial growth. Targeting certain aspects of the CREB-induced signaling pathway may represent an innovative approach for development of host-directed therapeutics to combat TB.

Pahari, Susanta, Eusondia Arnett, Jan Simper, Abul Azad, Israel Guerrero-Arguero, Chengjin Ye, Hao Zhang, et al. (2023) 2023. “A New Tractable Method for Generating Human Alveolar Macrophage Like Cells in Vitro to Study Lung Inflammatory Processes and Diseases”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2023.04.05.535806.

UNLABELLED: Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAM) to pulmonary diseases remains poorly understood due to difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, i.e. , Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (GM-CSF, TGF-β, and IL-10) that facilitate the conversion of blood-obtained monocytes to an AM-Like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function, and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines.

IMPORTANCE: Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

Neehus, Anna-Lena, Brenna Carey, Marija Landekic, Patricia Panikulam, Gail Deutsch, Masato Ogishi, Carlos A Arango-Franco, et al. (2023) 2023. “Human Inherited CCR2 Deficiency Underlies Progressive Polycystic Lung Disease”. Cell. https://doi.org/10.1016/j.cell.2023.11.036.

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.