Publications

2023

Djurkovic, Marija A, Carson G Leavitt, Eusondia Arnett, Valeriia Kriachun, Luis Martinez-Sobrido, Rossella Titone, Laura J Sherwood, Andrew Hayhurst, Larry S Schlesinger, and Olena Shtanko. (2023) 2023. “Ebola Virus Uses Tunneling Nanotubes As an Alternate Route of Dissemination.”. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiad400.

Ebola virus disease is marked by the rapid virus replication and spread. Ebola virus (EBOV) enters the cell by macropinocytosis, replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs). TNTs, an actin-based long-range intercellular communication system, allows for direct exchange of cytosolic constituents between cells. Using live, scanning electron and high-resolution quantitative 3D-microscopy, we show that EBOV infection of primary human cells results in the enhanced formation of TNTs, containing viral nucleocapsids. TNTs promoted the intercellular transfer of nucleocapsids in the absence of live virus, and virus could replicate in cells devoid of entry factors after initial stall. Our studies suggest an alternate model of EBOV dissemination within its host, laying the groundwork for further investigations into the pathogenesis of filoviruses and, importantly, stimulating new areas of antiviral design.

Piergallini, Tucker J, Julia M Scordo, Anna Allué-Guardia, Paula A Pino, Hao Zhang, Hong Cai, Yufeng Wang, Larry S Schlesinger, Jordi B Torrelles, and Joanne Turner. (2023) 2023. “Acute Inflammation Alters Lung Lymphocytes and Potentiates Innate-Like Behavior in Young Mouse Lung CD8 T Cells, Resembling Lung CD8 T Cells from Old Mice.”. Journal of Leukocyte Biology. https://doi.org/10.1093/jleuko/qiad060.

Inflammation plays a significant role in lung infection including that caused by Mycobacterium tuberculosis (M.tb), where both adaptive and innate lymphocytes can affect infection control. How inflammation affects infection is understood in a broad sense, including inflammaging (chronic inflammation) seen in the elderly, but the explicit role that inflammation can play in regulation of lymphocyte function is not known. To fill this knowledge gap, we used an acute lipopolysaccharide (LPS) treatment in young mice and studied lymphocyte responses, focusing on CD8 T cell subsets. LPS treatment decreased the total numbers of T cells in the lungs of LPS mice, while also increasing the number of activated T cells. We demonstrate that lung CD8 T cells from LPS mice became capable of an antigen independent innate-like IFN-γ secretion, dependent on IL-12p70 stimulation, paralleling innate-like IFN-γ secretion of lung CD8 T cells from old mice. Overall, this study provides information on how acute inflammation can affect lymphocytes, particularly CD8 T cells, which could potentially affect immune control of various disease states.

2022

Torrelles, Jordi B, Blanca I Restrepo, Yidong Bai, Corinna Ross, Larry S Schlesinger, and Joanne Turner. (2022) 2022. “The Impact of Aging on the Lung Alveolar Environment, Predetermining Susceptibility to Respiratory Infections.”. Frontiers in Aging 3: 818700. https://doi.org/10.3389/fragi.2022.818700.

Respiratory infections are one of the top causes of death in the elderly population, displaying susceptibility factors with increasing age that are potentially amenable to interventions. We posit that with increasing age there are predictable tissue-specific changes that prevent the immune system from working effectively in the lung. This mini-review highlights recent evidence for altered local tissue environment factors as we age focusing on increased tissue oxidative stress with associated immune cell changes, likely driven by the byproducts of age-associated inflammatory disease. Potential intervention points are presented.

Allué-Guardia, Anna, Andreu Garcia-Vilanova, Angélica M Olmo-Fontánez, Jay Peters, Diego J Maselli, Yufeng Wang, Joanne Turner, Larry S Schlesinger, and Jordi B Torrelles. (2022) 2022. “Host- and Age-Dependent Transcriptional Changes in Mycobacterium Tuberculosis Cell Envelope Biosynthesis Genes After Exposure to Human Alveolar Lining Fluid.”. International Journal of Molecular Sciences 23 (2). https://doi.org/10.3390/ijms23020983.

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019, and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes into close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic, innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional, with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay shows that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows a lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status, determined by factors such as age, might play an important role in determining infection outcome.

Jurkowitz, Marianne S, Abul K Azad, Paula C Monsma, Tracy L Keiser, Jean Kanyo, TuKiet T Lam, Charles E Bell, and Larry S Schlesinger. (2022) 2022. “Mycobacterium Tuberculosis Encodes a YhhN Family Membrane Protein With Lysoplasmalogenase Activity That Protects Against Toxic Host Lysolipids.”. The Journal of Biological Chemistry 298 (5): 101849. https://doi.org/10.1016/j.jbc.2022.101849.

The pathogen Mycobacterium tuberculosis (M.tb) resides in human macrophages, wherein it exploits host lipids for survival. However, little is known about the interaction between M.tb and macrophage plasmalogens, a subclass of glycerophospholipids with a vinyl ether bond at the sn-1 position of the glycerol backbone. Lysoplasmalogens, produced from plasmalogens by hydrolysis at the sn-2 carbon by phospholipase A2, are potentially toxic but can be broken down by host lysoplasmalogenase, an integral membrane protein of the YhhN family that hydrolyzes the vinyl ether bond to release a fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. Curiously, M.tb encodes its own YhhN protein (MtbYhhN), despite having no endogenous plasmalogens. To understand the purpose of this protein, the gene for MtbYhhN (Rv1401) was cloned and expressed in Mycobacterium smegmatis (M.smeg). We found the partially purified protein exhibited abundant lysoplasmalogenase activity specific for lysoplasmenylethanolamine or lysoplasmenylcholine (pLPC) (Vmax∼15.5 μmol/min/mg; Km∼83 μM). Based on cell density, we determined that lysoplasmenylethanolamine, pLPC, lysophosphatidylcholine, and lysophosphatidylethanolamine were not toxic to M.smeg cells, but pLPC and LPC were highly toxic to M.smeg spheroplasts, which are cell wall-deficient mycobacterial forms. Importantly, spheroplasts prepared from M.smeg cells overexpressing MtbYhhN were protected from membrane disruption/lysis by pLPC, which was rapidly depleted from the media. Finally, we found that overexpression of full-length MtbYhhN in M.smeg increased its survival within human macrophages by 2.6-fold compared to vector controls. These data support the hypothesis that MtbYhhN protein confers a growth advantage for mycobacteria in macrophages by cleaving toxic host pLPC into potentially energy-producing products.

Simper, Jan D, Esteban Perez, Larry S Schlesinger, and Abul K Azad. (2022) 2022. “Resistance and Susceptibility Immune Factors at Play During Mycobacterium Tuberculosis Infection of Macrophages.”. Pathogens (Basel, Switzerland) 11 (10). https://doi.org/10.3390/pathogens11101153.

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), is responsible for >1.5 million deaths worldwide annually. Innate immune cells, especially macrophages, are the first to encounter M.tb, and their response dictates the course of infection. During infection, macrophages exert a variety of immune factors involved in either controlling or promoting the growth of M.tb. Research on this topic has been performed in both in vitro and in vivo animal models with discrepant results in some cases based on the model of study. Herein, we review macrophage resistance and susceptibility immune factors, focusing primarily on recent advances in the field. We include macrophage cellular pathways, bioeffector proteins and molecules, cytokines and chemokines, associated microbiological factors and bacterial strains, and host genetic factors in innate immune genes. Recent advances in mechanisms underlying macrophage resistance and susceptibility factors will aid in the successful development of host-directed therapeutics, a topic emphasized throughout this review.

Garcia-Vilanova, Andreu, Angélica M Olmo-Fontánez, Juan I Moliva, Anna Allué-Guardia, Harjinder Singh, Robert E Merritt, Diego J Maselli, et al. (2022) 2022. “The Aging Human Lung Mucosa: A Proteomics Study.”. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 77 (10): 1969-74. https://doi.org/10.1093/gerona/glac091.

The older adult population, estimated to double by 2050, is at increased risk of respiratory infections and other pulmonary diseases. Biochemical changes in the lung alveolar lining fluid (ALF) and in alveolar compartment cells can alter local immune responses as we age, generating opportunities for invading pathogens to establish successful infections. Indeed, the lung alveolar space of older adults is a pro-inflammatory, pro-oxidative, dysregulated environment that remains understudied. We performed an exploratory, quantitative proteomic profiling of the soluble proteins present in ALF, developing insight into molecular fingerprints, pathways, and regulatory networks that characterize the alveolar space in old age, comparing it to that of younger individuals. We identified 457 proteins that were significantly differentially expressed in older adult ALF, including increased production of matrix metalloproteinases, markers of cellular senescence, antimicrobials, and proteins of neutrophilic granule origin, among others, suggesting that neutrophils in the lungs of older adults could be potential contributors to the dysregulated alveolar environment with increasing age. Finally, we describe a hypothetical regulatory network mediated by the serum response factor that could explain the neutrophilic profile observed in the older adult population.

Hoerter, Alexis, Eusondia Arnett, Larry S Schlesinger, and Elsje Pienaar. (2022) 2022. “Systems Biology Approaches to Investigate the Role of Granulomas in TB-HIV Coinfection.”. Frontiers in Immunology 13: 1014515. https://doi.org/10.3389/fimmu.2022.1014515.

The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.

Restrepo, Blanca I, Julia M Scordo, Génesis P Aguillón-Durán, Doris Ayala, Ana Paulina Quirino-Cerrillo, Raúl Loera-Salazar, America Cruz-González, et al. (2022) 2022. “Differential Role of Type 2 Diabetes As a Risk Factor for Tuberculosis in the Elderly versus Younger Adults.”. Pathogens (Basel, Switzerland) 11 (12). https://doi.org/10.3390/pathogens11121551.

The elderly are understudied despite their high risk of tuberculosis (TB). We sought to identify factors underlying the lack of an association between TB and type 2 diabetes (T2D) in the elderly, but not adults. We conducted a case-control study in elderly (≥65 years old; ELD) vs. younger adults (young/middle-aged adults (18-44/45-64 years old; YA|MAA) stratified by TB and T2D, using a research study population (n = 1160) and TB surveillance data (n = 8783). In the research study population the adjusted odds ratio (AOR) of TB in T2D was highest in young adults (AOR 6.48) but waned with age becoming non-significant in the elderly. Findings were validated using TB surveillance data. T2D in the elderly (vs. T2D in younger individuals) was characterized by better glucose control (e.g., lower hyperglycemia or HbA1c), lower insulin resistance, more sulphonylureas use, and features of less inflammation (e.g., lower obesity, neutrophils, platelets, anti-inflammatory use). We posit that differences underlying glucose dysregulation and inflammation in elderly vs. younger adults with T2D, contribute to their differential association with TB. Studies in the elderly provide valuable insights into TB-T2D pathogenesis, e.g., here we identified insulin resistance as a novel candidate mechanism by which T2D may increase active TB risk.