Helicobacter pylori colonizes the gastric epithelium of approximately 50% of the world's population and plays a causative role in the development of gastric and duodenal ulcers. H. pylori is phagocytosed by mononuclear phagocytes, but the internalized bacteria are not killed and the reasons for this host defense defect are unclear. We now show using immunofluorescence and electron microscopy that H. pylori employs an unusual mechanism to avoid phagocytic killing: delayed entry followed by homotypic phagosome fusion. Unopsonized type I H. pylori bound readily to macrophages and were internalized into actin-rich phagosomes after a lag of approximately 4 min. Although early (10 min) phagosomes contained single bacilli, H. pylori phagosomes coalesced over the next approximately 2 h. The resulting "megasomes" contained multiple viable organisms and were stable for 24 h. Phagosome-phagosome fusion required bacterial protein synthesis and intact host microtubules, and both chloramphenicol and nocodazole increased killing of intracellular H. pylori. Type II strains of H. pylori are less virulent and lack the cag pathogenicity island. In contrast to type I strains, type II H. pylori were rapidly ingested and killed by macrophages and did not stimulate megasome formation. Collectively, our data suggest that megasome formation is an important feature of H. pylori pathogenesis.
Publications
2000
Mycobacterium tuberculosis and M. avium complex (MAC) enter and multiply within monocytes and macrophages in phagosomes. In vitro growth studies using standard culture media indicate that siderophore-mediated iron (Fe) acquisition plays a critical role in the growth and metabolism of both M. tuberculosis and MAC. However, the applicability of such studies to conditions within the macrophage phagosome is unclear, due in part to the absence of experimental means to inhibit such a process. Based on the ability of gallium (Ga(3+)) to concentrate within mononuclear phagocytes and on evidence that Ga disrupts cellular Fe-dependent metabolic pathways by substituting for Fe(3+) and failing to undergo redox cycling, we hypothesized that Ga could disrupt Fe acquisition and Fe-dependent metabolic pathways of mycobacteria. We find that Ga(NO(3))(3) and Ga-transferrin produce an Fe-reversible concentration-dependent growth inhibition of M. tuberculosis strains and MAC grown extracellularly and within human macrophages. Ga is bactericidal for M. tuberculosis growing extracellularly and within macrophages. Finally, we provide evidence that exogenously added Fe is acquired by intraphagosomal M. tuberculosis and that Ga inhibits this Fe acquisition. Thus, Ga(NO(3))(3) disruption of mycobacterial Fe metabolism may serve as an experimental means to study the mechanism of Fe acquisition by intracellular mycobacteria and the role of Fe in intracellular survival. Furthermore, given the inability of biological systems to discriminate between Ga and Fe, this approach could have broad applicability to the study of Fe metabolism of other intracellular pathogens.
Components of the innate immune system serve to protect the host from invading pathogens prior to the generation of a directed immune response, and influence the manner in which the directed immune response develops. The pulmonary surfactant system consists of a complex array of proteins and lipids that reduce surface tension of the alveoli, and appears to play an essential role in innate immunity. Investigators have recently gained insight into the interactions between components of the surfactant system and the respiratory pathogen Mycobacterium tuberculosis. It is likely that pulmonary surfactant and other innate immune determinants play significant roles in the pathogenesis of tuberculosis.
1999
Surfactant protein-D (SP-D) is a collectin produced in the distal lung airspaces that is believed to play an important role in innate pulmonary immunity. Naive immunologic responses to Mycobacterium tuberculosis (M.tb) are especially important in the lung, since entry of this inhaled pathogen into the alveolar macrophage is a pivotal event in disease pathogenesis. Here we investigated SP-D binding to M.tb and the effect of this binding on the adherence of M. tb to human macrophages. These studies demonstrate specific binding of SP-D to M.tb that is saturable, calcium dependent, and carbohydrate inhibitable. In addition to purified SP-D, SP-D in bronchoalveolar lavage fluids from healthy donors and patients with alveolar proteinosis also binds to M.tb. Incubation of M.tb with SP-D results in agglutination of the bacteria. In contrast to its binding to M.tb, SP-D binds minimally to the avirulent Mycobacterium smegmatis. SP-D binds predominantly to lipoarabinomannan from the virulent Erdman strain of M.tb, but not the lipoarabinomannan from M. smegmatis. The binding of SP-D to Erdman lipoarabinomannan is mediated by the terminal mannosyl oligosaccharides of this lipoglycan. Incubation of M.tb with subagglutinating concentrations of SP-D leads to reduced adherence of the bacteria to macrophages (62.7% of control adherence +/- 3.3% SEM, n = 8), whereas incubation of bacteria with surfactant protein A leads to significantly increased adherence to monocyte-derived macrophages. These data provide evidence for specific binding of SP-D to M. tuberculosis and indicate that SP-D and surfactant protein A serve different roles in the innate host response to this pathogen in the lung.
Immune complexes that vary in size and composition are present in the sera and synovial fluid of juvenile rheumatoid arthritis (JRA) patients. They are believed to be potent inducers of the ongoing inflammatory process in JRA. However, the precise composition and role of these complexes in the pathophysiology of JRA remain unclear. We hypothesized that circulating ICs have the potential to interact with resident joint synovial fibroblasts (synoviocytes) and induce the expression of inflammatory cytokines. To test this hypothesis, cultures of synoviocytes from healthy individuals were treated with ICs isolated from the sera of JRA patients. Studies reported in this work demonstrate that IgM affinity-purified ICs from the sera of JRA patients contain IgM, C1q, IgG, and C3 to a variable extent. These ICs induce IL-8 mRNA and protein production in normal synoviocytes. Our data indicate that C1q in these ICs mediates, in part, IL-8 induction in synoviocytes. This is based on our findings of C1q-binding proteins for collagen stalks (cC1qR) and globular heads (gC1q-binding protein) of C1q in synoviocytes. In addition, collagen stalk and to some extent globular head fragments of C1q inhibit IC-mediated IL-8 induction in synoviocytes. Together, these findings provide evidence for a novel mechanism of IL-8 production by synoviocytes, which could play a key role in inflammation by recruiting leukocytes to synovial tissue and fluid-and subsequently contributing to joint disease.
1998
The macrophage mannose receptor (MR) along with complement receptors mediates phagocytosis of the M. tuberculosis virulent strains Erdman and H37Rv. We have determined that the terminal mannosyl units of the M. tuberculosis surface lipoglycan, lipoarabinomannan (LAM), from the Erdman strain serve as ligands for the MR. The biology of the MR (receptor binding and trafficking) in response to phagocytic stimuli is not well characterized. This study analyzes the MR-dependent phagocytosis mediated by Erdman LAM presented on a 1-micron-diameter phagocytic particle. Erdman LAM microspheres exhibited a time- and dose-dependent rapid increase in attachment and internalization by human monocyte-derived macrophages (MDMs). In contrast, internalization of LAM microspheres by monocytes was minimal. Microsphere internalization by MDMs was visualized and quantitated by immunofluorescence and confocal and electron microscopy and resembled conventional phagocytosis. Phagocytosis of LAM microspheres by MDMs was energy, cytoskeleton, and calcium dependent and was mannan inhibitable. Trypsin treatment of MDMs at 37 degrees C, which depleted surface and recycling intracellular pools of the MR, reduced the subsequent attachment of LAM microspheres. Trypsin treatment at 4 degrees C allowed for subsequent recovery of LAM microsphere phagocytosis at 37 degrees C by recycled MRs. Pretreatment of MDMs with cycloheximide influenced LAM microsphere phagocytosis to only a small extent, indicating that MR-dependent phagocytosis of the microspheres was occurring primarily by preformed recycled receptors. This study characterizes the requirements for macrophage phagocytosis of a LAM-coated particle mediated by the MR. This model will be useful in further characterization of the intracellular pathway taken by phagocytic particles coated with different LAM types in macrophages following ingestion.
Accumulated evidence to date confirms the importance of the C3-CR pathway in the phagocytosis of pathogenic mycobacteria. Detailed receptor-ligand studies for phagocytosis are creating the framework to test the hypothesis that the entry pathway for these bacteria influences the immediate host cell response and their intracellular fate. These types of study are particularly important for improving our understanding of the outcome of primary infection in humans, where the number of bacilli is presumed to be very low.
1996
Phagocytosis of Mycobacterium tuberculosis by human mononuclear phagocytes is mediated primarily by complement receptors (CRs) but the transmembrane signaling mechanisms that regulate phagocytosis of the bacterium are unknown. We have analyzed the activation of phospholipase D (PLD) during phagocytosis of the virulent Erdman and attenuated H37Ra strains of M. tuberculosis by human monocyte-derived macrophages (MDMs), radiolabeled with [3H]-lyso-phosphatidylcholine. Phagocytosis of either Erdman or H37Ra M. tuberculosis in the presence of autologous non-immune serum was associated with a 2.5-3-fold increase in phosphatidic acid (PA). Definitive evidence for activation of PLD by M. tuberculosis was provided by markedly increased generation of the PLD-specific product phosphatidylethanol (PEt) (9.9-fold increases in [3H]-PEt for both Erdman and H37Ra strains compared to control, P < 0.001, n = 12), in the presence of 0.5% ethanol. Phagocytosis of opsonized zymosan (OZ), which is also mediated by CRs, was similarly associated with activation of PLD (12.2-fold increase in PEt, P < 0.001, n = 12). The competitive PLD inhibitor 2,3-diphosphoglycerate (2,3-DPG) produced concentration-dependent inhibition of PLD activity stimulated by either M. tuberculosis (-78 +/- 8%) or OZ (-73 +/- 6%). Inhibition of PLD by 2,3-DPG was associated with concentration-dependent reductions in phagocytosis of M. tuberculosis (-74 +/- 4%) and OZ (-68 +/- 5%). Addition of purified PLD from Streptomyces chromofuscus to 2,3-DPG-treated macrophages restored phagocytosis of M. tuberculosis to control levels. Inhibition of M. tuberculosis- or OZ-stimulated PA generation by ethanol was associated with concentration-dependent reductions in phagocytosis of both particles. Incubation of MDMs with either Erdman or H37Ra M. tuberculosis, or OZ, resulted in rapid (onset 1 min) and sustained (60 min) increases in the tyrosine phosphorylation (Tyr-P) of multiple MDM proteins. Prominent Tyr-P was noted in proteins of 150, 95, 72, 56, and 42 kD. The protein tyrosine kinase (PTK) inhibitors genistein and herbimycin A reduced M. tuberculosis-stimulated PLD activity by 66-84%. Inhibition of PLD activity by genistein or herbimycin A was associated with inhibition of phagocytosis of M. tuberculosis and OZ. These data demonstrate that PLD is activated during macrophage phagocytosis of M. tuberculosis or OZ, that PTKs are involved in this stimulation of PLD, and that the extent of phagocytosis of these particles is tightly coupled to activation of PLD.
Phagocytosis of the virulent Erdman and H37Rv strains of Mycobacterium tuberculosis, but not that of the attenuated H37Ra strain, by human macrophages is mediated by the mannose receptor (MR) in addition to complement receptors. We have recently determined that a major capsular lipoglycan, lipoarabinomannan (LAM), from the Erdman strain serves as a ligand for the MR during phagocytosis of bacteria. In this study we directly compare uptake of Erdman, H37Rv, and H37Ra LAM by human macrophages and assess the relative contribution of the MR in this process. Microspheres coated with LAM served as model phagocytic particles for studies of LAM as a capsular ligand. Uptake (37 degrees C) of LAM microspheres by monocyte-derived macrophages was greatest for Erdman LAM and intermediate for H37Rv and H37Ra LAM compared with that of buffer microspheres or microspheres coated with LAM from a nontuberculosis strain of mycobacterium (AraLAM). Inhibition of microsphere uptake in the presence of mannan or mannose-BSA was highest for Erdman LAM (75 +/- 8 and 50 +/- 7%, respectively) and H37Rv LAM (57 +/- 13 and 21 +/- 5%, respectively) relative to H37Ra LAM (36 +/- 16 and 22 +/- 11 %, respectively). Inhibition of microsphere uptake in the presence of anti-MR Ab followed a similar pattern: Erdman LAM (80 +/- 9%) > H37Rv LAM (53 +/- 1%) > H37Ra LAM (26 +/- 12%). Attachment (4 degrees C) of microspheres coated with Erdman LAM, H37Rv LAM, and H37Ra LAM was enhanced 12-, 5-, and 4-fold, respectively, compared with that of microspheres coated with AraLAM, and mannose-BSA inhibited attachment of these microspheres by 82 +/- 7, 69 +/- 8, and 12 +/- 17%. Galactose-BSA did not inhibit attachment of any LAM microsphere groups. Chromatographic analyses of mild acid hydrolysates of LAM from Erdman, H37Rv, and H37Ra all revealed the major terminal dimannosyl units. These studies demonstrate differences in the ability of LAM from different M. tuberculosis strains to mediate adherence to macrophages and to serve as ligands for the macrophage MR despite the presence of terminal dimannosyl units. Thus, these studies point toward other subtle structural alterations in LAM among strains that influence initial interactions with human phagocytes.