Publications

2021

Scordo, Julia M, Génesis P Aguillón-Durán, Doris Ayala, Ana Paulina Quirino-Cerrillo, Eminé Rodríguez-Reyna, Mateo Joya-Ayala, Francisco Mora-Guzmán, et al. (2021) 2021. “Interferon Gamma Release Assays for Detection of Latent Mycobacterium Tuberculosis in Older Hispanic People.”. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases 111: 85-91. https://doi.org/10.1016/j.ijid.2021.08.014.

BACKGROUND: Interferon gamma release assays (IGRAs) are used to detect latent Mycobacterium tuberculosis (M.tb) infection (LTBI) in adults, but their performance in older people is not well-established. We evaluated IGRAs for LTBI detection in older Hispanic recent TB contacts (ReC) or community controls (CoC).

METHODS: Cross-sectional assessment of LTBI with T-SPOT.TB and/or QuantiFERON-Gold in-tube or -Plus assay in older (≥60 years) and adult (18-50 years) Hispanic people.

RESULTS: We enrolled 193 CoC (119 adults, 74 older persons) and 459 ReC (361 adults, 98 older persons). LTBI positivity increased with age in CoC (19%-59%, P<0.001), but was similar in ReC (59%-69%, P=0.329). Older people had lower concordance between IGRAs (kappa 0.465 vs 0.688 in adults) and more inconclusive results (indeterminate/borderline 11.6% vs 5.8% in adults, P=0.012). With simultaneous IGRAs, inconclusive results were resolved as positive or negative with the other IGRA. The magnitude of response to M.tb peptides in IGRAs was similar among age groups, but responsiveness to mitogens was lower in older people.

CONCLUSIONS: IGRAs are suitable for LTBI detection in older people. Discordant and inconclusive findings are more prevalent in older people, but results are resolved when IGRA is repeated with a different IGRA test.

Singh, Bindu, Dhiraj K Singh, Shashank R Ganatra, Ruby A Escobedo, Shabaana Khader, Larry S Schlesinger, Deepak Kaushal, and Smriti Mehra. (2021) 2021. “Myeloid-Derived Suppressor Cells Mediate T Cell Dysfunction in Nonhuman Primate TB Granulomas.”. MBio 12 (6): e0318921. https://doi.org/10.1128/mbio.03189-21.

Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell population comprised of immature myeloid cells and myeloid progenitors with very potent immunosuppressive potential. MDSCs are reported to be abundant in the lungs of active tuberculosis (TB) patients. We sought to perform an in-depth study of MDSCs during latent TB infection (LTBI) and active TB (ATB) using the nonhuman primate (NHP) model of pulmonary TB. We found a higher proportion of granulocytic, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the lungs of ATB animals compared to those with LTBI or naive control animals. Active disease in the lung, but not LTBI, was furthermore associated with higher proliferation, expansion, and immunosuppressive capabilities of PMN-MDSCs, as shown by enhanced expression of Ki67, indoleamine 2,3-dioxygenase (IDO1), interleukin-10 (IL-10), matrix metallopeptidase 9 (MMP-9), inducible nitric oxide synthase (iNOS), and programmed death-ligand 1 (PD-L1). These immunosuppressive PMN-MDSCs specifically localized to the lymphocytic cuff at the periphery of the granulomas in animals with ATB. Conversely, these cells were scarcely distributed in interstitial lung tissue and the inner core of granulomas. This spatial regulation suggests an important immunomodulatory role of PMN-MDSCs by restricting T cell access to the TB granuloma core and can potentially explain dysfunctional anti-TB responses in active granuloma. Our results raise the possibility that the presence of MDSCs can serve as a biomarker for ATB, while their disappearance can indicate successful therapy. Furthermore, MDSCs may serve as a potential target cell for adjunctive TB therapy. IMPORTANCE Myeloid cells are immunocytes of innate origin that orchestrate the first response toward pathogens via immune surveillance (uptake and killing), antigen presentation, and initiation of adaptive immunity by T cell stimulation. However, MDSCs are a subset of innate immunocytes that deviate to an immunoregulatory phenotype. MDSCs possess strong immunosuppressive capabilities that are induced in autoimmune, malignant neoplastic, and chronic inflammatory diseases. Induction of MDSCs has been found in peripheral blood, bronchoalveolar lavage (BAL) fluid, and pleural effusions of active TB patients, but their precise localization in lung tissue and in TB granulomas remains unclear due to challenges associated with sampling lungs and granulomas from active TB patients. Nonhuman primates (NHPs) are an important animal model with TB granulomas that closely mimic those found in humans and can therefore be used for studies that are otherwise challenging with patient material. Herein, we study MDSC localization in the lungs of NHPs exhibiting latent and active TB. Our findings reveal that MDSCs localize and exert their immunosuppressive roles at the periphery rather than in the core of TB granulomas.

Allué-Guardia, Anna, Andreu Garcia-Vilanova, Angélica M Olmo-Fontánez, Jay Peters, Diego J Maselli, Yufeng Wang, Joanne Turner, Larry S Schlesinger, and Jordi B Torrelles. (2021) 2021. “Host- and Age-Dependent Transcriptional Changes in Mycobacterium Tuberculosis Cell Envelope Biosynthesis Genes After Exposure to Human Alveolar Lining Fluid.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2021.09.08.459334.

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis ( M . tb ), resulted in almost 1.4 million deaths in 2019 and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M . tb comes in close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M . tb upon contact, defining subsequent M . tb -host cell interactions and infection outcomes in vitro and in vivo . We also demonstrated that ALF from 60+ year old elders (E-ALF) vs . healthy 18- to 45-year-old adults (A-ALF) is dysfunctional with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay demonstrates that M . tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M . tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M . tb exposure to E-ALF shows lesser transcriptional response, with most of the M . tb genes unchanged or downregulated. Overall, this study indicates that M . tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status determined by factors such as age might play an important role in determining infection outcome.

2020

Azad, Abul K, Christopher Lloyd, Wolfgang Sadee, and Larry S Schlesinger. (2020) 2020. “Challenges of Immune Response Diversity in the Human Population Concerning New Tuberculosis Diagnostics, Therapies, and Vaccines.”. Frontiers in Cellular and Infection Microbiology 10: 139. https://doi.org/10.3389/fcimb.2020.00139.

Universal approaches to the prevention and treatment of human diseases fail to take into account profound immune diversity resulting from genetic variations across populations. Personalized or precision medicine takes into account individual lifestyle, environment, and biology (genetics and immune status) and is being adopted in several disease intervention strategies such as cancer and heart disease. However, its application in infectious diseases, particularly global diseases such as tuberculosis (TB), is far more complex and in a state of infancy. Here, we discuss the impact of human genetic variations on immune responses and how they relate to failures seen in current TB diagnostic, therapy, and vaccine approaches across populations. We offer our perspective on the challenges and potential for more refined approaches going forward.

Bartlett, Stacey, Adrian Tandhyka Gemiarto, Minh Dao Ngo, Haressh Sajiir, Semira Hailu, Roma Sinha, Cheng Xiang Foo, et al. (2020) 2020. “GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium Tuberculosis Infection and Is Associated With TB Disease Severity.”. Frontiers in Immunology 11: 601534. https://doi.org/10.3389/fimmu.2020.601534.

Oxidized cholesterols have emerged as important signaling molecules of immune function, but little is known about the role of these oxysterols during mycobacterial infections. We found that expression of the oxysterol-receptor GPR183 was reduced in blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB patients without T2D and was associated with TB disease severity on chest x-ray. GPR183 activation by 7α,25-dihydroxycholesterol (7α,25-OHC) reduced growth of Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth inhibition was associated with reduced IFN-β and IL-10 expression and enhanced autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and dysregulated IFNs during early infection. Together, our data demonstrate that GPR183 is an important regulator of intracellular mycobacterial growth and interferons during mycobacterial infection.

Rosa, Bruce A, Mushtaq Ahmed, Dhiraj K Singh, José Alberto Choreño-Parra, Journey Cole, Luis Armando Jiménez-Álvarez, Tatiana Sofía Rodríguez-Reyna, et al. (2020) 2020. “IFN Signaling and Neutrophil Degranulation Transcriptional Signatures Are Induced During SARS-CoV-2 Infection.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.08.06.239798.

The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.

Locke, Landon W, Larry S Schlesinger, and Elliott D Crouser. (2020) 2020. “Current Sarcoidosis Models and the Importance of Focusing on the Granuloma.”. Frontiers in Immunology 11: 1719. https://doi.org/10.3389/fimmu.2020.01719.

The inability to effectively model sarcoidosis in the laboratory or in animals continues to hinder the discovery and translation of new, targeted treatments. The granuloma is the signature pathological hallmark of sarcoidosis, yet there are significant knowledge gaps that exist with regard to how granulomas form. Significant progress toward improved therapeutic and prognostic strategies in sarcoidosis hinges on tractable experimental models that recapitulate the process of granuloma formation in sarcoidosis and allow for mechanistic insights into the molecular events involved. Through its inherent representation of the complex genetics underpinning immune cell dysregulation in sarcoidosis, a recently developed in vitro human granuloma model holds promise in providing detailed mechanistic insight into sarcoidosis-specific disease regulating pathways at play during early stages of granuloma formation. The purpose of this review is to critically evaluate current sarcoidosis models and assess their potential to progress the field toward the goal of improved therapies in this disease. We conclude with the potential integrated use of preclinical models to accelerate progress toward identifying and testing new drugs and drug combinations that can be rapidly brought to clinical trials.

Pahari, Susanta, Shikha Negi, Mohammad Aqdas, Eusondia Arnett, Larry S Schlesinger, and Javed N Agrewala. (2020) 2020. “Induction of Autophagy through CLEC4E in Combination With TLR4: An Innovative Strategy to Restrict the Survival of Mycobacterium Tuberculosis.”. Autophagy 16 (6): 1021-43. https://doi.org/10.1080/15548627.2019.1658436.

Host-directed therapies are gaining considerable impetus because of the emergence of drug-resistant strains of pathogens due to antibiotic therapy. Therefore, there is an urgent need to exploit alternative and novel strategies directed at host molecules to successfully restrict infections. The C-type lectin receptor CLEC4E and Toll-like receptor TLR4 expressed by host cells are among the first line of defense in encountering pathogens. Therefore, we exploited signaling of macrophages through CLEC4E in association with TLR4 agonists (C4.T4) to control the growth of Mycobacterium tuberculosis (Mtb). We observed significant improvement in host immunity and reduced bacterial load in the lungs of Mtb-infected mice and guinea pigs treated with C4.T4 agonists. Further, intracellular killing of Mtb was achieved with a 10-fold lower dose of isoniazid or rifampicin in conjunction with C4.T4 than the drugs alone. C4.T4 activated MYD88, PtdIns3K, STAT1 and RELA/NFKB, increased lysosome biogenesis, decreased Il10 and Il4 gene expression and enhanced macroautophagy/autophagy. Macrophages from autophagy-deficient (atg5 knockout or Becn1 knockdown) mice showed elevated survival of Mtb. The present findings also unveiled the novel role of CLEC4E in inducing autophagy through MYD88, which is required for control of Mtb growth. This study suggests a unique immunotherapeutic approach involving CLEC4E in conjunction with TLR4 to restrict the survival of Mtb through autophagy.

ABBREVIATIONS: 3MA: 3 methyladenine; AO: acridine orange; Atg5: autophagy related 5; AVOs: acidic vesicular organelles; BECN1: beclin 1, autophagy related; BMDMs: bone marrow derived macrophages; bw: body weight; C4.T4: agonists of CLEC4E (C4/TDB) and TLR4 (T4/ultra-pure-LPS); CFU: colony forming unit; CLEC4E/Mincle: C-type lectin domain family 4, member e; CLR: c-type lectin receptor; INH: isoniazid; LAMP1: lysosomal-associated membrane protein 1; MφC4.T4: Mtb-infected C4.T4 stimulated macrophages; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MDC: monodansylcadaverine; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response 88; NFKB: nuclear factor of kappa light polypeptide gene enhance in B cells; NLR: NOD (nucleotide-binding oligomerization domain)-like receptors; PFA: paraformaldehyde; PPD: purified protein derivative; PtdIns3K: class III phosphatidylinositol 3-kinase; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIF: rifampicin; RLR: retinoic acid-inducible gene-I-like receptors; TDB: trehalose-6,6´-dibehenate; TLR4: toll-like receptor 4; Ultra-pure-LPS: ultra-pure lipopolysaccharide-EK; V-ATPase: vacuolar-type H+ ATPase.