Publications

2020

Bartlett, Stacey, Adrian Tandhyka Gemiarto, Minh Dao Ngo, Haressh Sajiir, Semira Hailu, Roma Sinha, Cheng Xiang Foo, et al. (2020) 2020. “GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium Tuberculosis Infection and Is Associated With TB Disease Severity.”. Frontiers in Immunology 11: 601534. https://doi.org/10.3389/fimmu.2020.601534.

Oxidized cholesterols have emerged as important signaling molecules of immune function, but little is known about the role of these oxysterols during mycobacterial infections. We found that expression of the oxysterol-receptor GPR183 was reduced in blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB patients without T2D and was associated with TB disease severity on chest x-ray. GPR183 activation by 7α,25-dihydroxycholesterol (7α,25-OHC) reduced growth of Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth inhibition was associated with reduced IFN-β and IL-10 expression and enhanced autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and dysregulated IFNs during early infection. Together, our data demonstrate that GPR183 is an important regulator of intracellular mycobacterial growth and interferons during mycobacterial infection.

Azad, Abul K, Christopher Lloyd, Wolfgang Sadee, and Larry S Schlesinger. (2020) 2020. “Challenges of Immune Response Diversity in the Human Population Concerning New Tuberculosis Diagnostics, Therapies, and Vaccines.”. Frontiers in Cellular and Infection Microbiology 10: 139. https://doi.org/10.3389/fcimb.2020.00139.

Universal approaches to the prevention and treatment of human diseases fail to take into account profound immune diversity resulting from genetic variations across populations. Personalized or precision medicine takes into account individual lifestyle, environment, and biology (genetics and immune status) and is being adopted in several disease intervention strategies such as cancer and heart disease. However, its application in infectious diseases, particularly global diseases such as tuberculosis (TB), is far more complex and in a state of infancy. Here, we discuss the impact of human genetic variations on immune responses and how they relate to failures seen in current TB diagnostic, therapy, and vaccine approaches across populations. We offer our perspective on the challenges and potential for more refined approaches going forward.

Rosa, Bruce A, Mushtaq Ahmed, Dhiraj K Singh, José Alberto Choreño-Parra, Journey Cole, Luis Armando Jiménez-Álvarez, Tatiana Sofía Rodríguez-Reyna, et al. (2020) 2020. “IFN Signaling and Neutrophil Degranulation Transcriptional Signatures Are Induced During SARS-CoV-2 Infection.”. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.08.06.239798.

The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.

Locke, Landon W, Larry S Schlesinger, and Elliott D Crouser. (2020) 2020. “Current Sarcoidosis Models and the Importance of Focusing on the Granuloma.”. Frontiers in Immunology 11: 1719. https://doi.org/10.3389/fimmu.2020.01719.

The inability to effectively model sarcoidosis in the laboratory or in animals continues to hinder the discovery and translation of new, targeted treatments. The granuloma is the signature pathological hallmark of sarcoidosis, yet there are significant knowledge gaps that exist with regard to how granulomas form. Significant progress toward improved therapeutic and prognostic strategies in sarcoidosis hinges on tractable experimental models that recapitulate the process of granuloma formation in sarcoidosis and allow for mechanistic insights into the molecular events involved. Through its inherent representation of the complex genetics underpinning immune cell dysregulation in sarcoidosis, a recently developed in vitro human granuloma model holds promise in providing detailed mechanistic insight into sarcoidosis-specific disease regulating pathways at play during early stages of granuloma formation. The purpose of this review is to critically evaluate current sarcoidosis models and assess their potential to progress the field toward the goal of improved therapies in this disease. We conclude with the potential integrated use of preclinical models to accelerate progress toward identifying and testing new drugs and drug combinations that can be rapidly brought to clinical trials.

Pahari, Susanta, Shikha Negi, Mohammad Aqdas, Eusondia Arnett, Larry S Schlesinger, and Javed N Agrewala. (2020) 2020. “Induction of Autophagy through CLEC4E in Combination With TLR4: An Innovative Strategy to Restrict the Survival of Mycobacterium Tuberculosis.”. Autophagy 16 (6): 1021-43. https://doi.org/10.1080/15548627.2019.1658436.

Host-directed therapies are gaining considerable impetus because of the emergence of drug-resistant strains of pathogens due to antibiotic therapy. Therefore, there is an urgent need to exploit alternative and novel strategies directed at host molecules to successfully restrict infections. The C-type lectin receptor CLEC4E and Toll-like receptor TLR4 expressed by host cells are among the first line of defense in encountering pathogens. Therefore, we exploited signaling of macrophages through CLEC4E in association with TLR4 agonists (C4.T4) to control the growth of Mycobacterium tuberculosis (Mtb). We observed significant improvement in host immunity and reduced bacterial load in the lungs of Mtb-infected mice and guinea pigs treated with C4.T4 agonists. Further, intracellular killing of Mtb was achieved with a 10-fold lower dose of isoniazid or rifampicin in conjunction with C4.T4 than the drugs alone. C4.T4 activated MYD88, PtdIns3K, STAT1 and RELA/NFKB, increased lysosome biogenesis, decreased Il10 and Il4 gene expression and enhanced macroautophagy/autophagy. Macrophages from autophagy-deficient (atg5 knockout or Becn1 knockdown) mice showed elevated survival of Mtb. The present findings also unveiled the novel role of CLEC4E in inducing autophagy through MYD88, which is required for control of Mtb growth. This study suggests a unique immunotherapeutic approach involving CLEC4E in conjunction with TLR4 to restrict the survival of Mtb through autophagy.

ABBREVIATIONS: 3MA: 3 methyladenine; AO: acridine orange; Atg5: autophagy related 5; AVOs: acidic vesicular organelles; BECN1: beclin 1, autophagy related; BMDMs: bone marrow derived macrophages; bw: body weight; C4.T4: agonists of CLEC4E (C4/TDB) and TLR4 (T4/ultra-pure-LPS); CFU: colony forming unit; CLEC4E/Mincle: C-type lectin domain family 4, member e; CLR: c-type lectin receptor; INH: isoniazid; LAMP1: lysosomal-associated membrane protein 1; MφC4.T4: Mtb-infected C4.T4 stimulated macrophages; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MDC: monodansylcadaverine; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response 88; NFKB: nuclear factor of kappa light polypeptide gene enhance in B cells; NLR: NOD (nucleotide-binding oligomerization domain)-like receptors; PFA: paraformaldehyde; PPD: purified protein derivative; PtdIns3K: class III phosphatidylinositol 3-kinase; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIF: rifampicin; RLR: retinoic acid-inducible gene-I-like receptors; TDB: trehalose-6,6´-dibehenate; TLR4: toll-like receptor 4; Ultra-pure-LPS: ultra-pure lipopolysaccharide-EK; V-ATPase: vacuolar-type H+ ATPase.

Oladunni, Fatai S, Jun-Gyu Park, Paula A Pino, Olga Gonzalez, Anwari Akhter, Anna Allué-Guardia, Angélica Olmo-Fontánez, et al. (2020) 2020. “Lethality of SARS-CoV-2 Infection in K18 Human Angiotensin-Converting Enzyme 2 Transgenic Mice.”. Nature Communications 11 (1): 6122. https://doi.org/10.1038/s41467-020-19891-7.

Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.

2019

Lafuse, William P, Murugesan S Rajaram V, Qian Wu, Juan I Moliva, Jordi B Torrelles, Joanne Turner, and Larry S Schlesinger. (2019) 2019. “Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium Tuberculosis Infection.”. Journal of Immunology (Baltimore, Md. : 1950) 203 (8): 2252-64. https://doi.org/10.4049/jimmunol.1900495.

The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.

Wager, Chrissy M Leopold, Eusondia Arnett, and Larry S Schlesinger. (2019) 2019. “Mycobacterium Tuberculosis and Macrophage Nuclear Receptors: What We Do and Don’t Know.”. Tuberculosis (Edinburgh, Scotland) 116S: S98-S106. https://doi.org/10.1016/j.tube.2019.04.016.

Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.

Wager, Chrissy M Leopold, Eusondia Arnett, and Larry S Schlesinger. (2019) 2019. “Macrophage Nuclear Receptors: Emerging Key Players in Infectious Diseases.”. PLoS Pathogens 15 (3): e1007585. https://doi.org/10.1371/journal.ppat.1007585.

Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.