Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants.

Sharma, Manju, Xiang Zhang, Shuangmin Zhang, Liang Niu, Shuk-Mei Ho, Aimin Chen, and Shouxiong Huang. 2017. “Inhibition of Endocytic Lipid Antigen Presentation by Common Lipophilic Environmental Pollutants.”. Scientific Reports 7 (1): 2085.

Abstract

Environmental pollutants as non-heritable factors are now recognized as triggers for multiple human inflammatory diseases involving T cells. We postulated that lipid antigen presentation mediated by cluster of differentiation 1 (CD1) proteins for T cell activation is susceptible to lipophilic environmental pollutants. To test this notion, we determined whether the common lipophilic pollutants benzo[a]pyrene and diesel exhaust particles impact on the activation of lipid-specific T cells. Our results demonstrated that the expression of CD1a and CD1d proteins, and the activation of CD1a- and CD1d-restricted T cells were sensitively inhibited by benzo[a]pyrene even at the low concentrations detectable in exposed human populations. Similarly, diesel exhaust particles showed a marginal inhibitory effect. Using transcriptomic profiling, we discovered that the gene expression for regulating endocytic and lipid metabolic pathways was perturbed by benzo[a]pyrene. Imaging flow cytometry also showed that CD1a and CD1d proteins were retained in early and late endosomal compartments, respectively, supporting an impaired endocytic lipid antigen presentation for T cell activation upon benzo[a]pyrene exposure. This work conceptually demonstrates that lipid antigen presentation for T cell activation is inhibited by lipophilic pollutants through profound interference with gene expression and endocytic function, likely further disrupting regulatory cytokine secretion and ultimately exacerbating inflammatory diseases.

Last updated on 01/26/2024
PubMed