Publications

2023

Sharma, Manju, Liang Niu, Xiang Zhang, and Shouxiong Huang. (2023) 2023. “Comparative Transcriptomes Reveal Pro-Survival and Cytotoxic Programs of Mucosal-Associated Invariant T Cells Upon Bacillus Calmette-Guérin Stimulation.”. Frontiers in Cellular and Infection Microbiology 13: 1134119. https://doi.org/10.3389/fcimb.2023.1134119.

Mucosal-associated invariant T (MAIT) cells are protective against tuberculous and non-tuberculous mycobacterial infections with poorly understood mechanisms. Despite an innate-like nature, MAIT cell responses remain heterogeneous in bacterial infections. To comprehensively characterize MAIT activation programs responding to different bacteria, we stimulated MAIT cells with E. coli to compare with Bacillus Calmette-Guérin (BCG), which remains the only licensed vaccine and a feasible tool for investigating anti-mycobacterial immunity in humans. Upon sequencing mRNA from the activated and inactivated CD8+ MAIT cells, results demonstrated the altered MAIT cell gene profiles by each bacterium with upregulated expression of activation markers, transcription factors, cytokines, and cytolytic mediators crucial in anti-mycobacterial responses. Compared with E. coli, BCG altered more MAIT cell genes to enhance cell survival and cytolysis. Flow cytometry analyses similarly displayed a more upregulated protein expression of B-cell lymphoma 2 and T-box transcription factor Eomesodermin in BCG compared to E.coli stimulations. Thus, the transcriptomic program and protein expression of MAIT cells together displayed enhanced pro-survival and cytotoxic programs in response to BCG stimulation, supporting BCG induces cell-mediated effector responses of MAIT cells to fight mycobacterial infections.

Huang, Shouxiong, Adam Shahine, Tan-Yun Cheng, Yi-Ling Chen, Soo Weei Ng, Gautham R Balaji, Rachel Farquhar, et al. (2023) 2023. “CD1 Lipidomes Reveal Lipid-Binding Motifs and Size-Based Antigen-Display Mechanisms.”. Cell 186 (21): 4583-4596.e13. https://doi.org/10.1016/j.cell.2023.08.022.

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.

Puvvula, Jagadeesh, Kathrine E Manz, Joseph M Braun, Kurt D Pennell, Emily A DeFranco, Shuk-Mei Ho, Yuet-Kin Leung, et al. (2023) 2023. “Maternal and Newborn Metabolomic Changes Associated With Urinary Polycyclic Aromatic Hydrocarbon Metabolite Concentrations at Delivery: An Untargeted Approach.”. Metabolomics : Official Journal of the Metabolomic Society 20 (1): 6. https://doi.org/10.1007/s11306-023-02074-y.

INTRODUCTION: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio.

METHOD: We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways.

RESULTS: Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds.

CONCLUSION: In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.

2022

Bai, Fangfang, Zi Chen, Shuanglan Xu, Lu Han, Xiaoning Zeng, Shouxiong Huang, Zhou Zhu, and Linfu Zhou. (2022) 2022. “Wogonin Attenuates Neutrophilic Inflammation and Airway Smooth Muscle Proliferation through Inducing Caspase-Dependent Apoptosis and Inhibiting MAPK/Akt Signaling in Allergic Airways.”. International Immunopharmacology 113 (Pt B): 109410. https://doi.org/10.1016/j.intimp.2022.109410.

BACKGROUND: Severe neutrophilic asthma is often characterized by persistent airway inflammation and irreversible airway remodeling, which are overstimulated by the high-mobility group box protein 1 (HMGB1). Although wogonin, an O-methylated flavone, has been widely used to treat inflammatory and allergic diseases, its therapeutic effects and potential mechanisms on severe neutrophilic asthma remain elusive.

OBJECTIVE: To evaluate whether wogonin alleviates airway neutrophilia through inducing neutrophil apoptosis and attenuates airway smooth muscle cells (ASMCs) proliferation and migration.

METHODS: The effect of wogonin on reducing neutrophilic airway inflammation, including neutrophil infiltration and inflammatory mediators, was examined in a mouse model of severe neutrophilic asthma sensitized with ovalbumin and lipopolysaccharide. Also, the effect of wogonin on inducing human neutrophil apoptosis was manifested using cellular morphology, flow cytometry, and caspase inhibition assays. Furthermore, the effect of wogonin on inhibiting HMGB1-mediated ASMCs proliferation and migration was determined.

RESULTS: Wogonin reduced the frequency of neutrophils and inhibited the production of multiple inflammatory mediators, including ovalbumin-specific IgE, tumor necrosis factor-α, interleukin-6, and HMGB1, in bronchoalveolar lavage fluid and lung tissues of the neutrophilic asthmatic mouse model. These data strongly support a significantly suppressed neutrophilic airway inflammation, functionally consistent to the relieved airway hyperresponsiveness by wogonin in vivo. Wogonin induced human neutrophil apoptosis in a dose-dependent manner by activating caspase-8 and caspase-3 in vitro. Wogonin pretreatment abolished HMGB1-induced ASMCs proliferation and migration, which can be explained by the inhibition of phosphorylation in the mitogen-activated protein kinase (MAPK) /Akt singling pathways.

CONCLUSION: Our findings demonstrate that wogonin augments caspase-dependent apoptosis in neutrophils to alleviate neutrophilic inflammatory responses and regulates intracellular signaling to inhibit HMGB1-mediated ASMCs activation, providing a promising therapeutic agent for severe neutrophilic asthma.

2021

Huang, Shouxiong, Quan He, and Linfu Zhou. (2021) 2021. “T Cell Responses in Respiratory Viral Infections and Chronic Obstructive Pulmonary Disease.”. Chinese Medical Journal 134 (13): 1522-34. https://doi.org/10.1097/CM9.0000000000001388.

Respiratory viruses are major human pathogens that cause approximately 200 million pneumonia cases annually and induce various comorbidities with chronic obstructive pulmonary disease (COPD), resulting in significant health concerns and economic burdens. Clinical manifestations in respiratory viral infections and inflammations vary from asymptomatic, mild, to severe, depending on host immune cell responses to pathogens and interactions with airway epithelia. We critically review the activation, effector, and regulation of T cells in respiratory virus infections and chronic inflammations associated with COPD. Crosstalk among T cells, innate immune cells, and airway epithelial cells is discussed as essential parts of pathogenesis and protection in viral infections and COPD. We emphasize the specificity of peptide antigens and the functional heterogeneity of conventional CD4+ and CD8+ T cells to shed some light on potential cellular and molecular candidates for the future development of therapeutics and intervention against respiratory viral infections and inflammations.

Zhang, Yinyin, Wenya Shao, Jingwen Wu, Shouxiong Huang, Hongyu Yang, Zhousong Luo, Fuli Zheng, et al. (2021) 2021. “Inflammatory LncRNA AK039862 Regulates Paraquat-Inhibited Proliferation and Migration of Microglial and Neuronal Cells through the Pafah1b1/Foxa1 Pathway in Co-Culture Environments.”. Ecotoxicology and Environmental Safety 208: 111424. https://doi.org/10.1016/j.ecoenv.2020.111424.

Emerging evidences having suggested that particular lncRNAs have a potential effect on PD progression through provoking damage and inflammatory responses of microglia/ dopaminergic cells. In addition, paraquat can be accumulated in human body through various approaches and have an increased risk for Parkinson's disease. However, the specific role and mechanism of lncRNA related to neurotoxic in the progression of PD is unclear. In our study, a mouse PD model was established induced by the intraperitoneal injection of paraquat (5 mg/kg and 10 mg/kg) every three days (10 times). We determined differential expression of lncRNA AK039862 and its potential targeted genes Pafah1b1/Foxa1 in PD mouse model, then we used fluorescence in situ hybridization (FISH) to visualize the cellular distribution of AK039862. Short interfering RNAs (siRNAs) and overexpression plasmids were designed for knockdown or overexpression of AK039862. To simulate the coexisting dopaminergic cells and microglia cells in vitro, we applied several non-contact co-culture models, including conditioned medium and Transwell co-culture systems. Cytotoxicity of PQ was evaluated using bv2 cells with the concentrations: 30, 60 μM, and mn9d cells with the concentrations: 50, 100 μM. As a result, we depicted multiple interesting individual and interactive features of inflammatory lncRNA AK039862 involved in PQ-induced cellular functional effects. First, we detected that AK039862 contributed to the neuronal injury process in PQ-treated mice and co-localization of AK039862 with dopaminergic cells in vivo. And interestingly, we demonstrated that PQ significantly inhibited microglia and dopaminergic cells proliferation and microglia migration in vitro. Further research indicated that the PQ-induced low expression of AK039862 rescued microglia proliferation and migration inhibition via the AK039862/Pafah1b1/Foxa1 pathway. Meanwhile, AK039862 also participated in the interaction between microglia and dopaminergic cells with PQ treatment in non-contact co-culture models. In summary, we found that PQ inhibited the proliferation and migration of microglial cells, and elucidated AK039862 played a key role in PQ-induced neuroinflammatory damage through Pafah1b1/Foxa1. Finally, inflammatory AK039862 is involved in the complex communication between microglia and dopaminergic cells in the environment of PQ damage.

2020

Sharma, Manju, Shuangmin Zhang, Liang Niu, David M Lewinsohn, Xiang Zhang, and Shouxiong Huang. (2020) 2020. “Mucosal-Associated Invariant T Cells Develop an Innate-Like Transcriptomic Program in Anti-Mycobacterial Responses.”. Frontiers in Immunology 11: 1136. https://doi.org/10.3389/fimmu.2020.01136.

Conventional T cells exhibit a delayed response to the initial priming of peptide antigens presented by major histocompatibility complex (MHC) proteins. Unlike conventional T cells, mucosal-associated invariant T (MAIT) cells quickly respond to non-peptidic metabolite antigens presented by MHC-related protein 1 (MR1). To elucidate the MR1-dependent activation program of MAIT cells in response to mycobacterial infections, we determined the surface markers, transcriptomic profiles, and effector responses of activated human MAIT cells. Results revealed that mycobacterial-incubated antigen-presenting cells stimulated abundant human CD8+ MAIT cells to upregulate the co-expression of CD69 and CD26, as a combinatorial activation marker. Further transcriptomic analyses demonstrated that CD69+CD26++ CD8+MAIT cells highly expressed numerous genes for mediating anti-mycobacterial immune responses, including pro-inflammatory cytokines, cytolytic molecules, NK cell receptors, and transcription factors, in contrast to inactivated counterparts CD69+/-CD26+/- CD8+MAIT cells. Gene co-expression, enrichment, and pathway analyses yielded high statistical significance to strongly support that activated CD8+ MAIT cells shared gene expression and numerous pathways with NK and CD8+ T cells in activation, cytokine production, cytokine signaling, and effector functions. Flow cytometry detected that activated CD8+MAIT cells produced TNFα, IFNγ, and granulysin to inhibit mycobacterial growth and fight mycobacterial infection. Together, results strongly support that the combinatorial activation marker CD69+CD26++ labels the activated CD8+MAIT cells that develop an innate-like activation program in anti-mycobacterial immune responses. We speculate that the rapid production of anti-mycobacterial effector molecules facilitates MAIT cells to fight early mycobacterial infection in humans.

2018

Li, Tao, Rong Hu, Zi Chen, Qiyuan Li, Shouxiong Huang, Zhou Zhu, and Lin-Fu Zhou. (2018) 2018. “Fine Particulate Matter (PM2.5): The Culprit for Chronic Lung Diseases in China.”. Chronic Diseases and Translational Medicine 4 (3): 176-86. https://doi.org/10.1016/j.cdtm.2018.07.002.

Air pollution is a world public health problem. Particulate matter (PM), a mix of solid and liquid particles in the air, becomes an increasing concern in the social and economic development of China. For decades, epidemiological studies have confirmed the association between fine particle pollutants and respiratory diseases. It has been reported in different populations that increased Fine particulate matter (PM2.5) concentrations cause elevated susceptibility to respiratory diseases, including acute respiratory distress, asthma, chronic obstructive pulmonary disease, and lung cancer. This review will discuss the pathophysiology of PM2.5 in respiratory diseases, which are helpful for the prevention of air pollution and treatment of respiratory tract inflammatory diseases.

Kim, Dasom, Zi Chen, Lin-Fu Zhou, and Shou-Xiong Huang. (2018) 2018. “Air Pollutants and Early Origins of Respiratory Diseases.”. Chronic Diseases and Translational Medicine 4 (2): 75-94. https://doi.org/10.1016/j.cdtm.2018.03.003.

Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.

Sharma, Manju, Xiang Zhang, and Shouxiong Huang. (2018) 2018. “Integrate Imaging Flow Cytometry and Transcriptomic Profiling to Evaluate Altered Endocytic CD1d Trafficking.”. Journal of Visualized Experiments : JoVE, no. 140. https://doi.org/10.3791/57528.

Populational analyses of the morphological and functional alteration of endocytic proteins are challenging due to the demand of image capture at a single cell level and statistical image analysis at a populational level. To overcome this difficulty, we used imaging flow cytometry and transcriptomic profiling (RNA-seq) to determine altered subcellular localization of the cluster of differentiation 1d protein (CD1d) associated with impaired endocytic gene expression in human dendritic cells (DCs), which were exposed to the common lipophilic air pollutant benzo[a]pyrene. The colocalization of CD1d and endocytic marker Lamp1 proteins from thousands of cell images captured with imaging flow cytometry was analyzed using IDEAS and ImageJ-Fiji programs. Numerous cellular images with co-stained CD1d and Lamp1 proteins were visualized after gating on CD1d+Lamp1+ DCs using IDEAS. The enhanced CD1d and Lamp1 colocalization upon BaP exposure was further demonstrated using thresholded scatterplots, tested with Mander's coefficients for co-localized intensity, and plotted based on the percentage of co-localized areas using ImageJ-Fiji. Our data provide an advantageous instrumental and bioinformatic approach to measure protein colocalization at both single and populational cellular levels, supporting an impaired functional outcome of transcriptomic alteration in pollutant-exposed human DCs.