Abstract
The identification of pattern-recognition receptors that selectively respond to evolutionarily conserved chemical (often pathogen-derived) moieties has provided key insight into how innate immune cells facilitate rapid and relatively specific antimicrobial immune activity. In contrast, relatively slower adaptive immune responses rely on T cell clonal expansion that develops in response to variable peptides bound to the groove of classical major histocompatibility complex (MHC) proteins. For certain nonclassical 'MHC-like' class Ib proteins, such as H2-M3 and CD1d, their respective binding grooves seem to have been adapted to present to T cells unique molecular patterns analogous to those involved in innate signaling. Here we propose that another MHC class Ib protein, MR1, which is required for the gut flora-dependent development of mucosa-associated invariant T cells, presents either a microbe-produced or a microbe-induced pattern.