Publications

2009

Carlson, Tracy K, Jordi B Torrelles, Kelly Smith, Tim Horlacher, Riccardo Castelli, Peter H Seeberger, Erika C Crouch, and Larry S Schlesinger. (2009) 2009. “Critical Role of Amino Acid Position 343 of Surfactant Protein-D in the Selective Binding of Glycolipids from Mycobacterium Tuberculosis.”. Glycobiology 19 (12): 1473-84. https://doi.org/10.1093/glycob/cwp122.

Surfactant protein D (SP-D), a lectin that recognizes carbohydrates via its C-type carbohydrate recognition domains (CRDs), regulates Mycobacterium tuberculosis (M.tb)-macrophage interactions via recognition of M.tb mannosylated cell wall components. SP-D binds to, agglutinates, and reduces phagocytosis and intracellular growth of M.tb. Species-specific variations in the CRD amino acid sequence contribute to carbohydrate recognition preferences and have been exploited to enhance the antimicrobial properties of SP-D in vitro. Here, we characterized the binding interaction between several wild-type and mutant SP-D neck + CRD trimeric subunits (NCRDs) and pathogenic and nonpathogenic mycobacterial species. Specific amino acid substitutions (i.e., the 343-amino-acid position) that flank the carbohydrate binding groove led to significant increases in binding of only virulent and attenuated M.tb strains and to a lesser extent M. marinum, whereas there was negligible binding to M. avium complex and M. smegmatis. Moreover, a nonconserved mutation at the critical 321-amino-acid position (involved in Ca(2+) coordination) abrogated binding to M.tb and M. marinum. We further characterized the binding of NCRDs to the predominant surface-exposed mannosylated lipoglycans of the M.tb cell envelope. Results showed a binding pattern that is dependent on the nature of the side chain of the 343-amino-acid position flanking the SP-D CRD binding groove and the nature of the terminal mannosyl sugar linkages of the mycobacterial lipoglycans. We conclude that the 343 position is critical in defining the binding pattern of SP-D proteins to M.tb and its mannosylated cell envelope components.

Rajaram, Murugesan S, V, Jonathan P Butchar, Kishore L Parsa V, Thomas J Cremer, Amal Amer, Larry S Schlesinger, and Susheela Tridandapani. (2009) 2009. “Akt and SHIP Modulate Francisella Escape from the Phagosome and Induction of the Fas-Mediated Death Pathway.”. PloS One 4 (11): e7919. https://doi.org/10.1371/journal.pone.0007919.

Francisella tularensis infects macrophages and escapes phago-lysosomal fusion to replicate within the host cytosol, resulting in host cell apoptosis. Here we show that the Fas-mediated death pathway is activated in infected cells and correlates with escape of the bacterium from the phagosome and the bacterial burden. Our studies also demonstrate that constitutive activation of Akt, or deletion of SHIP, promotes phago-lysosomal fusion and limits bacterial burden in the host cytosol, and the subsequent induction of Fas expression and cell death. Finally, we show that phagosomal escape/intracellular bacterial burden regulate activation of the transcription factors sp1/sp3, leading to Fas expression and cell death. These data identify for the first time host cell signaling pathways that regulate the phagosomal escape of Francisella, leading to the induction of Fas and subsequent host cell death.

Chiu, Hao-Chieh, Jian Yang, Shilpa Soni, Samuel K Kulp, John S Gunn, Larry S Schlesinger, and Ching-Shih Chen. (2009) 2009. “Pharmacological Exploitation of an Off-Target Antibacterial Effect of the Cyclooxygenase-2 Inhibitor Celecoxib Against Francisella Tularensis.”. Antimicrobial Agents and Chemotherapy 53 (7): 2998-3002. https://doi.org/10.1128/AAC.00048-09.

Francisella tularensis, a bacterium which causes tularemia in humans, is classified as a CDC category A bioterrorism agent. In this study, we demonstrate that celecoxib, an anti-inflammatory cyclooxygenase-2 inhibitor in clinical use, exhibits activity against a type A strain of F. tularensis (Schu S4), the live vaccine strain of F. tularensis (a type B strain), and F. novicida ("F. tularensis subsp. novicida") directly in growth medium. This bacterial killing, however, was not noted with rofecoxib, despite its higher potency than that of celecoxib in inhibiting cyclooxygenase-2. The unique ability of celecoxib to inhibit the proliferation of F. tularensis could be pharmacologically exploited to develop novel anti-Francisella therapeutic agents, of which the proof of principle is demonstrated by compound 20, a celecoxib derivative identified through the screening of a celecoxib-based focused compound library. Compound 20 inhibited the intracellular proliferation of Francisella in macrophages without causing appreciable toxicity to these host cells. Together, these data support the translational potential of compound 20 for the further development of novel, potent anti-Francisella agents.

Torrelles, Jordi B, Lucy E DesJardin, Jessica MacNeil, Thomas M Kaufman, Beth Kutzbach, Rose Knaup, Travis R McCarthy, et al. (2009) 2009. “Inactivation of Mycobacterium Tuberculosis Mannosyltransferase PimB Reduces the Cell Wall Lipoarabinomannan and Lipomannan Content and Increases the Rate of Bacterial-Induced Human Macrophage Cell Death.”. Glycobiology 19 (7): 743-55. https://doi.org/10.1093/glycob/cwp042.

The Mycobacterium tuberculosis (M.tb) cell wall contains an important group of structurally related mannosylated lipoglycans called phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), and mannose-capped lipoarabinomannan (ManLAM), where the terminal alpha-[1–>2] mannosyl structures on higher order PIMs and ManLAM have been shown to engage C-type lectins such as the macrophage mannose receptor directing M.tb phagosome maturation arrest. An important gene described in the biosynthesis of these molecules is the mannosyltransferase pimB (Rv0557). Here, we disrupted pimB in a virulent strain of M.tb. We demonstrate that the inactivation of pimB in M.tb does not abolish the production of any of its cell wall mannosylated lipoglycans; however, it results in a quantitative decrease in the ManLAM and LM content without affecting higher order PIMs. This finding indicates gene redundancy or the possibility of an alternative biosynthetic pathway that may compensate for the PimB deficiency. Furthermore, infection of human macrophages by the pimB mutant leads to an alteration in macrophage phenotype concomitant with a significant increase in the rate of macrophage death.

Cremer, Thomas J, David H Ravneberg, Corey D Clay, Melissa G Piper-Hunter, Clay B Marsh, Terry S Elton, John S Gunn, et al. (2009) 2009. “MiR-155 Induction by F. Novicida But Not the Virulent F. Tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response.”. PloS One 4 (12): e8508. https://doi.org/10.1371/journal.pone.0008508.

The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.

Sow, Fatoumata B, Gail R Alvarez, Ryan P Gross, Abhay R Satoskar, Larry S Schlesinger, Bruce S Zwilling, and William P Lafuse. (2009) 2009. “Role of STAT1, NF-KappaB, and C/EBPbeta in the Macrophage Transcriptional Regulation of Hepcidin by Mycobacterial Infection and IFN-Gamma.”. Journal of Leukocyte Biology 86 (5): 1247-58. https://doi.org/10.1189/jlb.1208719.

Hepcidin is an antimicrobial peptide involved in regulating iron homeostasis. It is induced by iron overload and decreased by hypoxia and anemia. Hepcidin regulates iron metabolism by inhibiting iron absorption by the duodenum and by inhibiting macrophage iron recycling. Hepcidin is induced in hepatocytes during the acute-phase response by IL-6. Previously, we have shown that hepcidin is not induced in macrophages by IL-6 but is induced by the synergistic interaction of IFN-gamma and Mycobacterium tuberculosis infection. In the present study, we examined the pathways involved in inducing macrophage hepcidin expression. We show that TLRs TLR2 and TLR4 and the transcription factor STAT1 are required for induction of hepcidin mRNA. Hepcidin promoter activity is also synergistically induced in RAW264.7 macrophages by IFN-gamma and M. tuberculosis. NF-kappaB and C/CEBP binding sites are required for promoter activity. Binding of NF-kappaB (p50/p65) to the NF-kappaB site and STAT1 and C/EBPbeta to the C/CEBP site was confirmed by EMSA. Knockdown of STAT1 and C/EBPbeta expression in RAW264.7 cells with siRNA plasmids inhibited hepcidin promoter activity induced by IFN-gamma and M. tuberculosis. Together, these studies demonstrate that macrophage hepcidin expression is induced by the activation of STAT1 and NF-kappaB and the induction of C/EBPbeta expression.

Chiu, Hao-Chieh, Shilpa Soni, Samuel K Kulp, Heather Curry, Dasheng Wang, John S Gunn, Larry S Schlesinger, and Ching-Shih Chen. (2009) 2009. “Eradication of Intracellular Francisella Tularensis in THP-1 Human Macrophages With a Novel Autophagy Inducing Agent.”. Journal of Biomedical Science 16: 110. https://doi.org/10.1186/1423-0127-16-110.

BACKGROUND: Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.

METHODS AND RESULTS: Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.

CONCLUSION: Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.

Chiu, Hao-Chieh, Samuel K Kulp, Shilpa Soni, Dasheng Wang, John S Gunn, Larry S Schlesinger, and Ching-Shih Chen. (2009) 2009. “Eradication of Intracellular Salmonella Enterica Serovar Typhimurium With a Small-Molecule, Host Cell-Directed Agent.”. Antimicrobial Agents and Chemotherapy 53 (12): 5236-44. https://doi.org/10.1128/AAC.00555-09.

Eradication of intracellular pathogenic bacteria with host-directed chemical agents has been an anticipated innovation in the treatment of antibiotic-resistant bacteria. We previously synthesized and characterized a novel small-molecule agent, AR-12, that induces autophagy and inhibits the Akt kinase in cancer cells. As both autophagy and the Akt kinase have been shown recently to play roles in the intracellular survival of several intracellular bacteria, including Salmonella enterica serovar Typhimurium, we investigated the effect of AR-12 on the intracellular survival of Salmonella serovar Typhimurium in macrophages. Our results show that AR-12 induces autophagy in macrophages, as indicated by increased autophagosome formation, and potently inhibits the survival of serovar Typhimurium in macrophages in association with increased colocalization of intracellular bacteria with autophagosomes. Intracellular bacterial growth was partially rescued in the presence of AR-12 by the short hairpin RNA-mediated knockdown of Beclin-1 or Atg7 in macrophages. Moreover, AR-12 inhibits Akt kinase activity in infected macrophages, which we show to be important for its antibacterial effect as the enforced expression of constitutively activated Akt1 in these cells reverses the AR-12-induced inhibition of intracellular serovar Typhimurium survival. Finally, oral administration of AR-12 at 2.5 mg/kg/day to serovar Typhimurium-infected mice reduced hepatic and splenic bacterial burdens and significantly prolonged survival. These findings show that AR-12 represents a proof of principle that the survival of intracellular bacteria can be suppressed by small-molecule agents that target both innate immunity and host cell factors modulated by bacteria.

Premanandan, Christopher, Craig A Storozuk, Corey D Clay, Michael D Lairmore, Larry S Schlesinger, and Andrew J Phipps. (2009) 2009. “Complement Protein C3 Binding to Bacillus Anthracis Spores Enhances Phagocytosis by Human Macrophages.”. Microbial Pathogenesis 46 (6): 306-14. https://doi.org/10.1016/j.micpath.2009.03.004.

Alveolar macrophages are thought to play a central role in the pathogenesis of inhalational anthrax. Receptors present on macrophages that mediate phagocytosis of Bacillus anthracis spores have yet to be completely defined. To begin to determine if soluble factors that are present in the lung such as immunoglobulin and complement are involved, we characterized the binding of human IgG and C3 to the surface of B. anthracis spores at different concentrations of nonimmune human serum. Furthermore we investigated the uptake of B. anthracis spores by human monocyte-derived macrophages in the presence of nonimmune human serum. Here we show that C3b is bound to B. anthracis spores and is activated through the classical pathway by IgG bound to the spore surface. Furthermore, we show that C3 serves as an opsonin for B. anthracis spores resulting in enhanced phagocytosis by human macrophages. These studies provide evidence that nonimmune serum contains IgG which binds to B. anthracis spores but is not sufficient to initiate phagocytosis. However, surface-bound IgG does initiate the classical pathway of complement activation, which is active in the lung, resulting in deposition of the opsonin C3b on the spore surface.