Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host.

Torrelles, Jordi B, and Larry S Schlesinger. 2010. “Diversity in Mycobacterium Tuberculosis Mannosylated Cell Wall Determinants Impacts Adaptation to the Host.”. Tuberculosis (Edinburgh, Scotland) 90 (2): 84-93.

Abstract

Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1–>2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.

Last updated on 10/20/2021
PubMed