Publications

2006

Hall-Stoodley, Luanne, Gayle Watts, Joy E Crowther, Ashwin Balagopal, Jordi B Torrelles, James Robison-Cox, Robert F Bargatze, Allen G Harmsen, Erika C Crouch, and Larry S Schlesinger. (2006) 2006. “Mycobacterium Tuberculosis Binding to Human Surfactant Proteins A and D, Fibronectin, and Small Airway Epithelial Cells under Shear Conditions.”. Infection and Immunity 74 (6): 3587-96.

A crucial step in infection is the initial attachment of a pathogen to host cells or tissue. Mycobacterium tuberculosis has evolved multiple strategies for establishing an infection within the host. The pulmonary microenvironment contains a complex milieu of pattern recognition molecules of the innate immune system that play a role in the primary response to inhaled pathogens. Encounters of M. tuberculosis with these recognition molecules likely influence the outcome of the bacillus-host interaction. Here we use a novel fluid shear assay to investigate the binding of M. tuberculosis to innate immune molecules that are produced by pulmonary epithelial cells and are thought to play a role in the lung innate immune response. Virulent and attenuated M. tuberculosis strains bound best to immobilized human fibronectin (FN) and surfactant protein A (SP-A) under this condition. Binding under fluid shear conditions was more consistent and significant compared to binding under static conditions. Soluble FN significantly increased the adherence of both virulent and attenuated M. tuberculosis strains to human primary small airway epithelial cells (SAEC) under fluid shear conditions. In contrast, SP-A and SP-D effects on bacterial adherence to SAEC differed between the two strains. The use of a fluid shear model to simulate physiological conditions within the lung and select for high-affinity binding interactions should prove useful for studies that investigate interactions between M. tuberculosis and host innate immune determinants.

Crowther, Joy E, and Larry S Schlesinger. (2006) 2006. “Endocytic Pathway for Surfactant Protein A in Human Macrophages: Binding, Clathrin-Mediated Uptake, and Trafficking through the Endolysosomal Pathway.”. American Journal of Physiology. Lung Cellular and Molecular Physiology 290 (2): L334-42.

In the noninflamed lung, surfactant protein A (SP-A) acts as an anti-inflammatory molecule through its effects on macrophage (MPhi) function, modulating cytokine and reactive oxygen and nitrogen intermediate production. The receptors responsible for these effects of SP-A on human MPhi are not clear, although SP-A binding to several proteins has been described. In this study, we demonstrate high-affinity specific binding of SP-A to primary human MPhi. SP-A binding was inhibited by EGTA, indicating calcium dependence. However, mannan did not inhibit SP-A binding, suggesting that binding is mediated by a direct protein-protein interaction that does not involve carbohydrate recognition. Our laboratory has previously shown that SP-A is rapidly endocytosed by human MPhi into discrete vesicles. Although previous work indicates that SP-A is ultimately degraded by murine MPhi over time, the trafficking pathway of SP-A through MPhi after uptake has not been reported and is of potential biological importance. We examined trafficking of SP-A in human MPhi by electron and confocal microscopy and show for the first time that SP-A is endocytosed by primary human MPhi through clathrin-coated pits and colocalizes sequentially over time with the early endosome marker EEA1, late endosome marker lamp-1, and lysosome marker cathepsin D. We conclude that SP-A binds to receptor(s) on human MPhi, is endocytosed by a receptor-mediated, clathrin-dependent process, and trafficks through the endolysosomal pathway. These studies provide further insight into the interactions of SP-A with the MPhi cell surface and intracellular compartments that play important roles in SP-A modulation of lung MPhi biology.

Parsa, Kishore L, V, Latha P Ganesan, Murugesan S Rajaram V, Mikhail A Gavrilin, Ashwin Balagopal, Nrusingh P Mohapatra, Mark D Wewers, Larry S Schlesinger, John S Gunn, and Susheela Tridandapani. (2006) 2006. “Macrophage Pro-Inflammatory Response to Francisella Novicida Infection Is Regulated by SHIP.”. PLoS Pathogens 2 (7): e71.

Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP) is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

Ferguson, Scott, Jennifer L Martin, Abul K Azad, Travis R McCarthy, Peter B Kang, Dennis R Voelker, Erika C Crouch, and Larry S Schlesinger. (2006) 2006. “Surfactant Protein D Increases Fusion of Mycobacterium Tuberculosis-Containing Phagosomes With Lysosomes in Human Macrophages.”. Infection and Immunity 74 (12): 7005-9.

Lung surfactant protein D (SP-D) binds to Mycobacterium tuberculosis surface lipoarabinomannan and results in bacterial agglutination, reduced uptake, and inhibition of growth in human macrophages. Here we show that SP-D limits the intracellular growth of bacilli in macrophages by increasing phagosome-lysosome fusion but not by generating a respiratory burst.

2005

McCarthy, Travis R, Jordi B Torrelles, Amanda Shearer MacFarlane, Melanie Katawczik, Beth Kutzbach, Lucy E DesJardin, Steven Clegg, Joanna B Goldberg, and Larry S Schlesinger. (2005) 2005. “Overexpression of Mycobacterium Tuberculosis ManB, a Phosphomannomutase That Increases Phosphatidylinositol Mannoside Biosynthesis in Mycobacterium Smegmatis and Mycobacterial Association With Human Macrophages.”. Molecular Microbiology 58 (3): 774-90.

Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.

Beharka, Alison A, Joy E Crowther, Francis X McCormack, Gerene M Denning, Jason Lees, Eric Tibesar, and Larry S Schlesinger. (2005) 2005. “Pulmonary Surfactant Protein A Activates a Phosphatidylinositol 3-Kinase/Calcium Signal Transduction Pathway in Human Macrophages: Participation in the Up-Regulation of Mannose Receptor Activity.”. Journal of Immunology (Baltimore, Md. : 1950) 175 (4): 2227-36.

Surfactant protein A (SP-A), a major component of lung surfactant, binds to macrophages and has been shown to alter several macrophage biological functions, including up-regulation of macrophage mannose receptor (MR) activity. In the present study, we show that SP-A induces signal transduction pathway(s) that impact on MR expression. The addition of human, rat, or recombinant rat SP-A to human monocyte-derived macrophages significantly raised the level of cytosolic Ca2+ above baseline within 10 s of SP-A addition, as measured by spectrofluorometric analysis. SP-A induced a refractory state specific for SP-A consistent with homologous desensitization of a receptor(s) linked to calcium mobilization because a second application of SP-A did not induce a rise in cytosolic Ca2+ whereas the addition of platelet-activating factor did. Using site-directed mutations in SP-A, we determined that both the attached sugars and the collagen-like domain of SP-A are necessary to optimize Ca2+ mobilization. SP-A triggered the increase in cytosolic Ca2+ by inducing activation of phospholipase C, which leads to the hydrolysis of membrane phospholipids, yielding inositol 1,4,5-trisphosphate and mobilizing intracellularly stored Ca2+ by inositol triphosphate-sensitive channels. Finally, inhibition of PI3Ks, which appear to act upstream of phospholipase C in Ca2+ mobilization, decreased the SP-A-induced rise in MR expression, providing evidence that SP-A induction of MR activity involves the activation of a pathway in which PI3K is a component. These studies provide further evidence that SP-A produced in the lung plays a role in modulating macrophage biology, thereby contributing to the alternative activation state of the alveolar macrophage.

Kang, Peter B, Abul K Azad, Jordi B Torrelles, Thomas M Kaufman, Alison Beharka, Eric Tibesar, Lucy E DesJardin, and Larry S Schlesinger. (2005) 2005. “The Human Macrophage Mannose Receptor Directs Mycobacterium Tuberculosis Lipoarabinomannan-Mediated Phagosome Biogenesis.”. The Journal of Experimental Medicine 202 (7): 987-99.

Mycobacterium tuberculosis (M.tb) survives in macrophages in part by limiting phagosome-lysosome (P-L) fusion. M.tb mannose-capped lipoarabinomannan (ManLAM) blocks phagosome maturation. The pattern recognition mannose receptor (MR) binds to the ManLAM mannose caps and mediates phagocytosis of bacilli by human macrophages. Using quantitative electron and confocal microscopy, we report that engagement of the MR by ManLAM during the phagocytic process is a key step in limiting P-L fusion. P-L fusion of ManLAM microspheres was significantly reduced in human macrophages and an MR-expressing cell line but not in monocytes that lack the receptor. Moreover, reversal of P-L fusion inhibition occurred with MR blockade. Inhibition of P-L fusion did not occur with entry via Fcgamma receptors or dendritic cell-specific intracellular adhesion molecule 3 grabbing nonintegrin, or with phosphatidylinositol-capped lipoarabinomannan. The ManLAM mannose cap structures were necessary in limiting P-L fusion, and the intact molecule was required to maintain this phenotype. Finally, MR blockade during phagocytosis of virulent M.tb led to a reversal of P-L fusion inhibition in human macrophages (84.0 +/- 5.1% vs. 38.6 +/- 0.6%). Thus, engagement of the MR by ManLAM during the phagocytic process directs M.tb to its initial phagosomal niche, thereby enhancing survival in human macrophages.

2004

Ferguson, Scott, Jeremy J Weis, Jennifer L Martin, and Larry S Schlesinger. (2004) 2004. “Complement Protein C3 Binding to Mycobacterium Tuberculosis Is Initiated by the Classical Pathway in Human Bronchoalveolar Lavage Fluid.”. Infection and Immunity 72 (5): 2564-73.

In high concentrations of fresh nonimmune human serum, Mycobacterium tuberculosis activates the alternative pathway of complement and binds C3 protein, resulting in enhanced phagocytosis by complement receptors on human alveolar macrophages. Yet in the lung, the alternative pathway of complement is relatively inactive compared to the classical pathway. To begin to determine whether C3 opsonophagocytosis of M. tuberculosis by alveolar macrophages can occur in the lung of the immunologically naive host, we characterized the binding of C3 to M. tuberculosis in different concentrations of fresh nonimmune human serum and concentrated human bronchoalveolar lavage fluid. Here we show that in human serum, C3 binding to M. tuberculosis is rapid, initiated by either the alternative pathway or the classical pathway, depending on the concentration of serum, and occurs by covalent linkages between the bacterial surface and the C3 cleavage products, C3b or C3bi. Human bronchoalveolar lavage fluid contains C3 protein and functional classical pathway activity that mediates the binding of C3 to the surface of M. tuberculosis. These studies provide evidence that when M. tuberculosis is first inhaled into the lungs of the human host, the bacterium is opsonized by C3 cleavage via classical pathway activation within the alveolus, providing a C3-dependent entry pathway into resident alveolar macrophages.

Crowther, Joy E, Vijay Kumar Kutala, Periannan Kuppusamy, Scott Ferguson, Alison A Beharka, Jay L Zweier, Francis X McCormack, and Larry S Schlesinger. (2004) 2004. “Pulmonary Surfactant Protein a Inhibits Macrophage Reactive Oxygen Intermediate Production in Response to Stimuli by Reducing NADPH Oxidase Activity.”. Journal of Immunology (Baltimore, Md. : 1950) 172 (11): 6866-74.

Alveolar macrophages are important host defense cells in the human lung that continuously phagocytose environmental and infectious particles that invade the alveolar space. Alveolar macrophages are prototypical alternatively activated macrophages, with up-regulated innate immune receptor expression, down-regulated costimulatory molecule expression, and limited production of reactive oxygen intermediates (ROI) in response to stimuli. Surfactant protein A (SP-A) is an abundant protein in pulmonary surfactant that has been shown to alter several macrophage (Mphi) immune functions. Data regarding SP-A effects on ROI production are contradictory, and lacking with regard to human Mphi. In this study, we examined the effects of SP-A on the oxidative response of human Mphi to particulate and soluble stimuli using fluorescent and biochemical assays, as well as electron paramagnetic resonance spectroscopy. SP-A significantly reduced Mphi superoxide production in response to the phorbol ester PMA and to serum-opsonized zymosan (OpZy), independent of any effect by SP-A on zymosan phagocytosis. SP-A was not found to scavenge superoxide. We measured Mphi oxygen consumption in response to stimuli using a new oxygen-sensitive electron paramagnetic resonance probe to determine the effects of SP-A on NADPH oxidase activity. SP-A significantly decreased Mphi oxygen consumption in response to PMA and OpZy. Additionally, SP-A reduced the association of NADPH oxidase component p47(phox) with OpZy phagosomes as determined by confocal microscopy, suggesting that SP-A inhibits NADPH oxidase activity by altering oxidase assembly on phagosomal membranes. These data support an anti-inflammatory role for SP-A in pulmonary homeostasis by inhibiting Mphi production of ROI through a reduction in NADPH oxidase activity.

Olakanmi, Oyebode, Larry S Schlesinger, Ambar Ahmed, and Bradley E Britigan. (2004) 2004. “The Nature of Extracellular Iron Influences Iron Acquisition by Mycobacterium Tuberculosis Residing Within Human Macrophages.”. Infection and Immunity 72 (4): 2022-8.

We have reported that Mycobacterium tuberculosis residing within the phagosomes of human monocyte-derived macrophages (MDM) can acquire Fe from extracellular transferrin (TF) and sources within the MDM. In the lung, Fe is also bound to lactoferrin (LF) and low-molecular-weight chelates. We therefore investigated the ability of intraphagosomal M. tuberculosis to acquire Fe from these sources. M. tuberculosis acquired 30-fold and 3-fold more Fe from LF and citrate, respectively, compared to TF, in spite of similar MDM-associated Fe. M. tuberculosis infection decreased MDM-associated Fe relative to uninfected MDM as follows: TF (38.7%), citrate (21.1%), and LF (15.3%). M. tuberculosis Fe acquisition from extracellular chelates (exogenous source) and from endogenous MDM Fe initially acquired from the three chelates (endogenous source) was compared. M. tuberculosis Fe acquisition was similar from exogenous and endogenous sources supplied as Fe-TF. In contrast, there was much greater intracellular M. tuberculosis Fe uptake from LF and citrate from the exogenous than endogenous source. Gamma interferon (IFN-gamma) reduced MDM Fe uptake from each chelate by approximately 50% and augmented the M. tuberculosis-induced decrease in MDM Fe uptake from exogenous TF, but not from LF or citrate. IFN-gamma minimally decreased intracellular M. tuberculosis Fe acquisition from exogenous Fe-TF but significantly increased Fe uptake from LF and citrate. Intraphagosomal M. tuberculosis Fe acquisition from both exogenous and endogenous MDM sources, and the effect of IFN-gamma on this process, is influenced by the nature of the extracellular Fe chelate. M. tuberculosis has developed efficient mechanisms of acquiring Fe from a variety of Fe chelates that it likely encounters within the human lung.