Publications by Year: 2005

2005

McCarthy, Travis R, Jordi B Torrelles, Amanda Shearer MacFarlane, Melanie Katawczik, Beth Kutzbach, Lucy E DesJardin, Steven Clegg, Joanna B Goldberg, and Larry S Schlesinger. (2005) 2005. “Overexpression of Mycobacterium Tuberculosis ManB, a Phosphomannomutase That Increases Phosphatidylinositol Mannoside Biosynthesis in Mycobacterium Smegmatis and Mycobacterial Association With Human Macrophages”. Molecular Microbiology 58 (3): 774-90.

Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.

Kang, Peter B, Abul K Azad, Jordi B Torrelles, Thomas M Kaufman, Alison Beharka, Eric Tibesar, Lucy E DesJardin, and Larry S Schlesinger. (2005) 2005. “The Human Macrophage Mannose Receptor Directs Mycobacterium Tuberculosis Lipoarabinomannan-Mediated Phagosome Biogenesis”. The Journal of Experimental Medicine 202 (7): 987-99.

Mycobacterium tuberculosis (M.tb) survives in macrophages in part by limiting phagosome-lysosome (P-L) fusion. M.tb mannose-capped lipoarabinomannan (ManLAM) blocks phagosome maturation. The pattern recognition mannose receptor (MR) binds to the ManLAM mannose caps and mediates phagocytosis of bacilli by human macrophages. Using quantitative electron and confocal microscopy, we report that engagement of the MR by ManLAM during the phagocytic process is a key step in limiting P-L fusion. P-L fusion of ManLAM microspheres was significantly reduced in human macrophages and an MR-expressing cell line but not in monocytes that lack the receptor. Moreover, reversal of P-L fusion inhibition occurred with MR blockade. Inhibition of P-L fusion did not occur with entry via Fcgamma receptors or dendritic cell-specific intracellular adhesion molecule 3 grabbing nonintegrin, or with phosphatidylinositol-capped lipoarabinomannan. The ManLAM mannose cap structures were necessary in limiting P-L fusion, and the intact molecule was required to maintain this phenotype. Finally, MR blockade during phagocytosis of virulent M.tb led to a reversal of P-L fusion inhibition in human macrophages (84.0 +/- 5.1% vs. 38.6 +/- 0.6%). Thus, engagement of the MR by ManLAM during the phagocytic process directs M.tb to its initial phagosomal niche, thereby enhancing survival in human macrophages.

Sieling, Peter A, Jordi B Torrelles, Steffen Stenger, Woosin Chung, Anne E Burdick, Thomas H Rea, Patrick J Brennan, John T Belisle, Steven A Porcelli, and Robert L Modlin. (2005) 2005. “The Human CD1-Restricted T Cell Repertoire Is Limited to Cross-Reactive Antigens: Implications for Host Responses Against Immunologically Related Pathogens”. Journal of Immunology (Baltimore, Md. : 1950) 174 (5): 2637-44.

The repertoires of CD1- and MHC-restricted T cells are complementary, permitting the immune recognition of both lipid and peptide Ags, respectively. To compare the breadth of the CD1-restricted and MHC-restricted T cell repertoires, we evaluated T cell responses against lipid and peptide Ags of mycobacteria in leprosy, comparing tuberculoid patients, who are able to restrict the pathogen, and lepromatous patients, who have disseminated infection. The striking finding was that in lepromatous leprosy, T cells did not efficiently recognize lipid Ags from the leprosy pathogen, Mycobacterium leprae, or the related species, Mycobacterium tuberculosis, yet were able to efficiently recognize peptide Ags from M. tuberculosis, but not M. leprae. To identify a mechanism for T cell unresponsiveness against mycobacterial lipid Ags in lepromatous patients, we used T cell clones to probe the species specificity of the Ags recognized. We found that the majority of M. leprae-reactive CD1-restricted T cell clones (92%) were cross-reactive for multiple mycobacterial species, whereas the majority of M. leprae-reactive MHC-restricted T cells were species specific (66%), with a limited number of T cell clones cross-reactive (34%) with M. tuberculosis. In comparison with the MHC class II-restricted T cell repertoire, the CD1-restricted T cell repertoire is limited to recognition of cross-reactive Ags, imparting a distinct role in the host response to immunologically related pathogens.

Berg, Stefan, James Starbuck, Jordi B Torrelles, Varalakshmi D Vissa, Dean C Crick, Delphi Chatterjee, and Patrick J Brennan. (2005) 2005. “Roles of Conserved Proline and Glycosyltransferase Motifs of EmbC in Biosynthesis of Lipoarabinomannan”. The Journal of Biological Chemistry 280 (7): 5651-63.

D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. Little is known of the complexity of their biosynthesis. beta-D-Arabinofuranosyl-1-monophosphoryldecaprenol is the only known sugar donor. EmbA, EmbB, and EmbC, products of the paralogous genes embA, embB, and embC, the sites of resistance to the anti-tuberculosis drug ethambutol (EMB), are the only known implicated enzymes. EmbA and -B apparently contribute to the synthesis of arabinogalactan, whereas EmbC is reserved for the synthesis of LAM. The Emb proteins show no overall similarity to any known proteins beyond Mycobacterium and related genera. However, functional motifs, equivalent to a proline-rich motif of several bacterial polysaccharide co-polymerases and a superfamily of glycosyltransferases, were found. Site-directed mutagenesis in glycosyltransferase superfamily C resulted in complete ablation of LAM synthesis. Point mutations in three amino acids of the proline motif of EmbC resulted in marked reduction of LAM-arabinan synthesis and accumulation of an unknown intermediate and of the known precursor lipomannan. Yet the pattern of the differently linked d-Araf units observed in wild type LAM-arabinan was largely retained in the proline motif mutants. The results allow for the presentation of a unique model of arabinan synthesis.