The Mycobacterium tuberculosis (M.tb) envelope is highly mannosylated with phosphatidyl-myo-inositol mannosides (PIMs), lipomannan, and mannose-capped lipoarabinomannan (ManLAM). Little is known regarding the interaction between specific PIM types and host cell C-type lectin pattern recognition receptors. The macrophage mannose receptor (MR) and dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells engage ManLAM mannose caps and regulate several host responses. In this study, we analyzed the association of purified PIM families (f, separated by carbohydrate number) and individual PIM species (further separated by fatty acid number) from M.tb H(37)R(v) with human monocyte-derived macrophages (MDMs) and lectin-expressing cell lines using an established bead model. Higher-order PIMs preferentially associated with the MR as demonstrated by their reduced association with MDMs upon MR blockade and increased binding to COS-1-MR. In contrast, the lower-order PIM(2)f associated poorly with MDMs and did not bind to COS-1-MR. Triacylated PIM species were recognized by MDM lectins better than tetra-acylated species and the degree of acylation influenced higher-order PIM association with the MR. Moreover, only higher-order PIMs that bind the MR showed a significant increase in phagosome-lysosome fusion upon MR blockade. In contrast with the MR, the PIM(2)f and lipomannan were recognized by DC-SIGN comparable to higher-order PIMs and ManLAM, and the association was independent of their degree of acylation. Thus, recognition of M.tb PIMs by host cell C-type lectins is dependent on both the nature of the terminal carbohydrates and degree of acylation. Subtle structural differences among the PIMs impact host cell recognition and response and are predicted to influence the intracellular fate of M.tb.
Publications by Year: 2006
2006
A crucial step in infection is the initial attachment of a pathogen to host cells or tissue. Mycobacterium tuberculosis has evolved multiple strategies for establishing an infection within the host. The pulmonary microenvironment contains a complex milieu of pattern recognition molecules of the innate immune system that play a role in the primary response to inhaled pathogens. Encounters of M. tuberculosis with these recognition molecules likely influence the outcome of the bacillus-host interaction. Here we use a novel fluid shear assay to investigate the binding of M. tuberculosis to innate immune molecules that are produced by pulmonary epithelial cells and are thought to play a role in the lung innate immune response. Virulent and attenuated M. tuberculosis strains bound best to immobilized human fibronectin (FN) and surfactant protein A (SP-A) under this condition. Binding under fluid shear conditions was more consistent and significant compared to binding under static conditions. Soluble FN significantly increased the adherence of both virulent and attenuated M. tuberculosis strains to human primary small airway epithelial cells (SAEC) under fluid shear conditions. In contrast, SP-A and SP-D effects on bacterial adherence to SAEC differed between the two strains. The use of a fluid shear model to simulate physiological conditions within the lung and select for high-affinity binding interactions should prove useful for studies that investigate interactions between M. tuberculosis and host innate immune determinants.
The mycobacterial D-arabinofuran is a common constituent of both cell wall mycolyl-arabinogalactan (AG) and the associated lipoarabinomannan (LAM), and is thus accorded critical structural and immunological roles. Despite a well-recognized importance, progress in understanding its full structural characteristics beyond the nonreducing terminal motifs has hitherto been limited by available analytical tools. An endogenous arabinanase activity recently isolated from Mycobacterium smegmatis was previously shown to be capable of releasing large oligoarabinosyl units from AG. Advanced tandem mass spectrometry utilizing both low and high energy collision induced dissociation now afforded a facile way to map and directly sequence the digestion products which were dominated by distinctive Ara18 and Ara19 structural units, together with Ara7 and lesser amount of Ara11 and Ara12. Significantly, evidence was obtained for the first time which validated the linkages and branching pattern of the previously inferred Ara22 structural motif of AG, on which the preferred cleavage sites of the novel arabinanase could be localized. The established linkage-specific MS/MS fragmentation characteristics further led to identification of a galactosamine substituent on the C2 position of a portion of the internal 3,5-branched Ara residue of the AG of Mycobacterium tuberculosis, but not that of the nonpathogenic, fast growing M. smegmatis.