Publications by Year: 2010


Rajaram, Murugesan S, V, Michelle N Brooks, Jessica D Morris, Jordi B Torrelles, Abul K Azad, and Larry S Schlesinger. (2010) 2010. “Mycobacterium Tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor Gamma Linking Mannose Receptor Recognition to Regulation of Immune Responses”. Journal of Immunology (Baltimore, Md. : 1950) 185 (2): 929-42.

Mycobacterium tuberculosis enhances its survival in macrophages by suppressing immune responses in part through its complex cell wall structures. Peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor superfamily member, is a transcriptional factor that regulates inflammation and has high expression in alternatively activated alveolar macrophages and macrophage-derived foam cells, both cell types relevant to tuberculosis pathogenesis. In this study, we show that virulent M. tuberculosis and its cell wall mannose-capped lipoarabinomannan induce PPARgamma expression through a macrophage mannose receptor-dependent pathway. When activated, PPARgamma promotes IL-8 and cyclooxygenase 2 expression, a process modulated by a PPARgamma agonist or antagonist. Upstream, MAPK-p38 mediates cytosolic phospholipase A(2) activation, which is required for PPARgamma ligand production. The induced IL-8 response mediated by mannose-capped lipoarabinomannan and the mannose receptor is independent of TLR2 and NF-kappaB activation. In contrast, the attenuated Mycobacterium bovis bacillus Calmette-Guérin induces less PPARgamma and preferentially uses the NF-kappaB-mediated pathway to induce IL-8 production. Finally, PPARgamma knockdown in human macrophages enhances TNF production and controls the intracellular growth of M. tuberculosis. These data identify a new molecular pathway that links engagement of the mannose receptor, an important pattern recognition receptor for M. tuberculosis, with PPARgamma activation, which regulates the macrophage inflammatory response, thereby playing a role in tuberculosis pathogenesis.

Torrelles, Jordi B, and Larry S Schlesinger. (2010) 2010. “Diversity in Mycobacterium Tuberculosis Mannosylated Cell Wall Determinants Impacts Adaptation to the Host”. Tuberculosis (Edinburgh, Scotland) 90 (2): 84-93.

Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1–>2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.

Gangaiah, Dharanesh, Zhe Liu, Jesús Arcos, Issmat I Kassem, Yasser Sanad, Jordi B Torrelles, and Gireesh Rajashekara. (2010) 2010. “Polyphosphate Kinase 2: A Novel Determinant of Stress Responses and Pathogenesis in Campylobacter Jejuni”. PloS One 5 (8): e12142.

BACKGROUND: Inorganic polyphosphate (poly P) plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni.

METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Deltappk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Deltappk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Deltappk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization.

CONCLUSIONS/SIGNIFICANCE: Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.