Publications

2022

Kim, Jeonghwan, Antony Jozic, Anindit Mukherjee, Dylan Nelson, Kevin Chiem, Md Siddiqur Rahman Khan, Jordi B Torrelles, Luis Martinez-Sobrido, and Gaurav Sahay. (2022) 2022. “Rapid Generation of Circulating and Mucosal Decoy Human ACE2 Using MRNA Nanotherapeutics for the Potential Treatment of SARS-CoV-2”. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 9 (35): e2202556. https://doi.org/10.1002/advs.202202556.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause lethal pulmonary damage in humans. It contains spike proteins on its envelope that bind to human angiotensin-converting enzyme 2 (hACE2) expressed on airway cells, enabling entry of the virus, and causing infection. The soluble form of hACE2 binds SARS-CoV-2 spike protein, prevents viral entry into target cells, and ameliorates lung injury; however, its short half-life limits therapeutic utilities. Here, synthetic mRNA is engineered to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. A novel lipid nanoparticle (LNP) is used for packaging and delivering mRNA to cells to produce hsACE2 proteins. Intravenously administered LNP delivers mRNA to hepatocytes, leading to the production of circulatory hsACE2 initiated within 2 h and sustained over several days. Inhaled LNP results in lung transfection and secretion of mucosal hsACE2 to lung epithelia, the primary site of entry and pathogenesis for SARS-CoV-2. Furthermore, mRNA-generated hsACE2 binds to the receptor-binding domain of the viral spike protein. Finally, hsACE2 effectively inhibits SARS-CoV-2 and its pseudoviruses from infecting host cells. The proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed to neutralize SARS-CoV-2 and open new treatment opportunities for coronavirus disease 2019 (COVID-19).

Yusoof, Kizil A, Juan Ignacio García, Alyssa Schami, Andreu Garcia-Vilanova, Holden Kelley V, Shu-Hua Wang, Adrian Rendon, Blanca I Restrepo, Marcel Yotebieng, and Jordi B Torrelles. (2022) 2022. “Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review”. Frontiers in Immunology 13: 870768. https://doi.org/10.3389/fimmu.2022.870768.

Tuberculosis (TB), considered an ancient disease, is still killing one person every 21 seconds. Diagnosis of Mycobacterium tuberculosis (M.tb) still has many challenges, especially in low and middle-income countries with high burden disease rates. Over the last two decades, the amount of drug-resistant (DR)-TB cases has been increasing, from mono-resistant (mainly for isoniazid or rifampicin resistance) to extremely drug resistant TB. DR-TB is problematic to diagnose and treat, and thus, needs more resources to manage it. Together with+ TB clinical symptoms, phenotypic and genotypic diagnosis of TB includes a series of tests that can be used on different specimens to determine if a person has TB, as well as if the M.tb strain+ causing the disease is drug susceptible or resistant. Here, we review and discuss advantages and disadvantages of phenotypic vs. genotypic drug susceptibility testing for DR-TB, advances in TB immunodiagnostics, and propose a call to improve deployable and low-cost TB diagnostic tests to control the DR-TB burden, especially in light of the increase of the global burden of bacterial antimicrobial resistance, and the potentially long term impact of the coronavirus disease 2019 (COVID-19) disruption on TB programs.

Mizrahi, Rena A, Wendy Y Lin, Ashley Gras, Ariel R Niedecken, Ellen K Wagner, Sheila M Keating, Nikita Ikon, et al. (2022) 2022. “GMP Manufacturing and IND-Enabling Studies of a Recombinant Hyperimmune Globulin Targeting SARS-CoV-2”. Pathogens (Basel, Switzerland) 11 (7). https://doi.org/10.3390/pathogens11070806.

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

Curry, Jennifer S, Bassent Abdelbary, Moncerrato Garcia-Viveros, Juan Ignacio García, Marcel Yotebieng, Adrian Rendon, Jordi B Torrelles, and Blanca I Restrepo. (2022) 2022. “South to North Migration Patterns of Tuberculosis Patients Diagnosed in the Mexican Border With Texas”. Journal of Immigrant and Minority Health 24 (5): 1113-21. https://doi.org/10.1007/s10903-021-01294-5.

The Mexican state of Tamaulipas serves as a migration waypoint into the US. Here, we determined the contribution of immigrants to TB burden in Tamaulipas. TB surveillance data from Tamaulipas (2006-2013) was used to conduct a cross-sectional characterization of TB immigrants (born outside Tamaulipas) and identify their association with TB treatment outcomes. Immigrants comprised 30.8% of TB patients, with > 99% originating from internal Mexican migration. Most migration was from South to North, with cities adjacent to the US border as destinations. Immigrants had higher odds of risk factors for TB [older age (≥ 65 year old, OR 2.4, 95% CI 2.1, 2.8), low education (OR 1.3, 95% CI 1.2, 1.4), diabetes (OR 1.2, 95% CI 1.1, 1.4)], or abandoning treatment (adjusted OR 1.2, 95% CI 1.0, 1.5). There is a need to identify strategies to prevent TB more effectively in Tamaulipas, a Mexican migration waypoint.

Zarkoob, Hoda, Anna Allué-Guardia, Yu-Chi Chen, Andreu Garcia-Vilanova, Olive Jung, Steven Coon, Min Jae Song, et al. (2022) 2022. “Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents”. Communications Biology 5 (1): 810. https://doi.org/10.1038/s42003-022-03753-7.

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.

Kim, Jeonghwan, Antony Jozic, Anindit Mukherjee, Dylan Nelson, Kevin Chiem, Md Siddiqur Rahman Khan, Jordi B Torrelles, Luis Martinez-Sobrido, and Gaurav Sahay. (2022) 2022. “Rapid Generation of Circulating and Mucosal Decoy Human ACE2 Using MRNA Nanotherapeutics for the Potential Treatment of SARS-CoV-2”. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 9 (35): e2202556. https://doi.org/10.1002/advs.202202556.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause lethal pulmonary damage in humans. It contains spike proteins on its envelope that bind to human angiotensin-converting enzyme 2 (hACE2) expressed on airway cells, enabling entry of the virus, and causing infection. The soluble form of hACE2 binds SARS-CoV-2 spike protein, prevents viral entry into target cells, and ameliorates lung injury; however, its short half-life limits therapeutic utilities. Here, synthetic mRNA is engineered to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. A novel lipid nanoparticle (LNP) is used for packaging and delivering mRNA to cells to produce hsACE2 proteins. Intravenously administered LNP delivers mRNA to hepatocytes, leading to the production of circulatory hsACE2 initiated within 2 h and sustained over several days. Inhaled LNP results in lung transfection and secretion of mucosal hsACE2 to lung epithelia, the primary site of entry and pathogenesis for SARS-CoV-2. Furthermore, mRNA-generated hsACE2 binds to the receptor-binding domain of the viral spike protein. Finally, hsACE2 effectively inhibits SARS-CoV-2 and its pseudoviruses from infecting host cells. The proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed to neutralize SARS-CoV-2 and open new treatment opportunities for coronavirus disease 2019 (COVID-19).

Chiem, Kevin, Jun-Gyu Park, Desarey Morales Vasquez, Richard K Plemper, Jordi B Torrelles, James J Kobie, Mark R Walter, Chengjin Ye, and Luis Martinez-Sobrido. (2022) 2022. “Monitoring SARS-CoV-2 Infection Using a Double Reporter-Expressing Virus”. Microbiology Spectrum 10 (5): e0237922. https://doi.org/10.1128/spectrum.02379-22.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. An essential requirement for understanding SARS-CoV-2 biology and the impact of antiviral therapeutics is a robust method to detect the presence of the virus in infected cells or animal models. Despite the development and successful generation of recombinant (r)SARS-CoV-2-expressing fluorescent or luciferase reporter genes, knowledge acquired from their use in in vitro assays and/or in live animals is limited to the properties of the fluorescent or luciferase reporter genes. Herein, for the first time, we engineered a replication-competent rSARS-CoV-2 that expresses both fluorescent (mCherry) and luciferase (Nluc) reporter genes (rSARS-CoV-2/mCherry-Nluc) to overcome limitations associated with the use of a single reporter gene. In cultured cells, rSARS-CoV-2/mCherry-Nluc displayed similar viral fitness as rSARS-CoV-2 expressing single reporter fluorescent and luciferase genes (rSARS-CoV-2/mCherry and rSARS-CoV-2/Nluc, respectively) or wild-type (WT) rSARS-CoV-2, while maintaining comparable expression levels of both reporter genes. In vivo, rSARS-CoV-2/mCherry-Nluc has similar pathogenicity in K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice than rSARS-CoV-2 expressing individual reporter genes or WT rSARS-CoV-2. Importantly, rSARS-CoV-2/mCherry-Nluc facilitates the assessment of viral infection and transmission in golden Syrian hamsters using in vivo imaging systems (IVIS). Altogether, this study demonstrates the feasibility of using this novel bioreporter-expressing rSARS-CoV-2 for the study of SARS-CoV-2 in vitro and in vivo. IMPORTANCE Despite the availability of vaccines and antivirals, the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to ravage health care institutions worldwide. Previously, we generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter proteins to track viral infection in vitro and/or in vivo. However, these rSARS-CoV-2 are restricted to express only a single fluorescent or a luciferase reporter gene, limiting or preventing their use in specific in vitro assays and/or in vivo studies. To overcome this limitation, we have engineered a rSARS-CoV-2 expressing both fluorescent (mCherry) and luciferase (Nluc) genes and demonstrated its feasibility to study the biology of SARS-CoV-2 in vitro and/or in vivo, including the identification and characterization of neutralizing antibodies and/or antivirals. Using rodent models, we visualized SARS-CoV-2 infection and transmission through in vivo imaging systems (IVIS).

García, Juan Ignacio, Johanna Meléndez, Rosa Álvarez, Carlos Mejía-Chew, Holden Kelley V, Sabeen Sidiki, Alejandra Castillo, et al. (2022) 2022. “Correction To: Accuracy of the Tuberculosis Point-of-Care Alere Determine Lipoarabinomannan Antigen Diagnostic Test Using α-Mannosidase Treated and Untreated Urine in a Cohort of People Living With HIV in Guatemala”. AIDS Research and Therapy 19 (1): 48. https://doi.org/10.1186/s12981-022-00466-z.
Restrepo, Blanca I, Julia M Scordo, Génesis P Aguillón-Durán, Doris Ayala, Ana Paulina Quirino-Cerrillo, Raúl Loera-Salazar, America Cruz-González, et al. (2022) 2022. “Differential Role of Type 2 Diabetes As a Risk Factor for Tuberculosis in the Elderly Versus Younger Adults”. Pathogens (Basel, Switzerland) 11 (12). https://doi.org/10.3390/pathogens11121551.

The elderly are understudied despite their high risk of tuberculosis (TB). We sought to identify factors underlying the lack of an association between TB and type 2 diabetes (T2D) in the elderly, but not adults. We conducted a case-control study in elderly (≥65 years old; ELD) vs. younger adults (young/middle-aged adults (18-44/45-64 years old; YA|MAA) stratified by TB and T2D, using a research study population (n = 1160) and TB surveillance data (n = 8783). In the research study population the adjusted odds ratio (AOR) of TB in T2D was highest in young adults (AOR 6.48) but waned with age becoming non-significant in the elderly. Findings were validated using TB surveillance data. T2D in the elderly (vs. T2D in younger individuals) was characterized by better glucose control (e.g., lower hyperglycemia or HbA1c), lower insulin resistance, more sulphonylureas use, and features of less inflammation (e.g., lower obesity, neutrophils, platelets, anti-inflammatory use). We posit that differences underlying glucose dysregulation and inflammation in elderly vs. younger adults with T2D, contribute to their differential association with TB. Studies in the elderly provide valuable insights into TB-T2D pathogenesis, e.g., here we identified insulin resistance as a novel candidate mechanism by which T2D may increase active TB risk.

Dong, Wenjuan, Heather Mead, Lei Tian, Jun-Gyu Park, Juan I Garcia, Sierra Jaramillo, Tasha Barr, et al. (2022) 2022. “The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-Severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus”. Journal of Virology 96 (1): e0096421. https://doi.org/10.1128/JVI.00964-21.

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.