Publications

2023

Headley, Colwyn A, Shalini Gautam, Angélica Olmo-Fontánez, Andreu Garcia-Vilanova, Varun Dwivedi, Anwari Akhter, Alyssa Schami, et al. (2023) 2023. “Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4+ T Cells in Aging.”. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), e2303664. https://doi.org/10.1002/advs.202303664.

Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.

Schami, Alyssa, Nurul Islam, John T Belisle, and Jordi B Torrelles. (2023) 2023. “Drug-Resistant Strains of Mycobacterium Tuberculosis: Cell Envelope Profiles and Interactions With the Host.”. Frontiers in Cellular and Infection Microbiology 13: 1274175. https://doi.org/10.3389/fcimb.2023.1274175.

In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.

Torrelles, Jordi B, and Delphi Chatterjee. (2023) 2023. “Collected Thoughts on Mycobacterial Lipoarabinomannan, a Cell Envelope Lipoglycan.”. Pathogens (Basel, Switzerland) 12 (11). https://doi.org/10.3390/pathogens12111281.

The presence of lipoarabinomannan (LAM) in the Mycobacterium tuberculosis (Mtb) cell envelope was first reported close to 100 years ago. Since then, numerous studies have been dedicated to the isolation, purification, structural definition, and elucidation of the biological properties of Mtb LAM. In this review, we present a brief historical perspective on the discovery of Mtb LAM and the herculean efforts devoted to structurally characterizing the molecule because of its unique structural and biological features. The significance of LAM remains high to this date, mainly due to its distinct immunological properties in conjunction with its role as a biomarker for diagnostic tests due to its identification in urine, and thus can serve as a point-of-care diagnostic test for tuberculosis (TB). In recent decades, LAM has been thoroughly studied and massive amounts of information on this intriguing molecule are now available. In this review, we give the readers a historical perspective and an update on the current knowledge of LAM with information on the inherent carbohydrate composition, which is unique due to the often puzzling sugar residues that are specifically found on LAM. We then guide the readers through the complex and myriad immunological outcomes, which are strictly dependent on LAM's chemical structure. Furthermore, we present issues that remain unresolved and represent the immediate future of LAM research. Addressing the chemistry, functions, and roles of LAM will lead to innovative ways to manipulate the processes that involve this controversial and fascinating biomolecule.

Villar-Hernández, Raquel, Irene Latorre, Antoni Noguera-Julian, Aina Martínez-Planas, Laura Minguell, Teresa Vallmanya, María Méndez, et al. (2023) 2023. “Development and Evaluation of an NTM-IGRA to Guide Pediatric Lymphadenitis Diagnosis.”. The Pediatric Infectious Disease Journal. https://doi.org/10.1097/INF.0000000000004211.

BACKGROUND: Diagnosis of nontuberculous mycobacteria (NTM) infections remains a challenge. In this study, we describe the evaluation of an immunological NTM-interferon (IFN)-γ release assay (IGRA) that we developed using glycopeptidolipids (GPLs) as NTM-specific antigens.

METHODS: We tested the NTM-IGRA in 99 samples from pediatric patients. Seventy-five were patients with lymphadenitis: 25 were NTM confirmed, 45 were of unknown etiology but compatible with mycobacterial infection and 5 had lymphadenitis caused by an etiologic agent other than NTM. The remaining 24 samples were from control individuals without lymphadenitis (latently infected with M. tuberculosis, uninfected controls and active tuberculosis patients). Peripheral blood mononuclear cells were stimulated overnight with GPLs. Detection of IFN-γ producing cells was evaluated by enzyme-linked immunospot assay.

RESULTS: NTM culture-confirmed lymphadenitis patient samples had a significantly higher response to GPLs than the patients with lymphadenitis of unknown etiology but compatible with mycobacterial infection (P < 0.001) and lymphadenitis not caused by NTM (P < 0.01). We analyzed the response against GPLs in samples from unknown etiology lymphadenitis but compatible with mycobacterial infection cases according to the tuberculin skin test (TST) response, and although not statistically significant, those with a TST ≥5 mm had a higher response to GPLs when compared with the TST <5 mm group.

CONCLUSIONS: Stimulation with GPLs yielded promising results in detecting NTM infection in pediatric patients with lymphadenitis. Our results indicate that the test could be useful to guide the diagnosis of pediatric lymphadenitis. This new NTM-IGRA could improve the clinical handling of NTM-infected patients and avoid unnecessary misdiagnosis and treatments.

Allué-Guardia, Anna, Jordi B Torrelles, and Alex Sigal. (2023) 2023. “Tuberculosis and COVID-19 in the Elderly: Factors Driving a Higher Burden of Disease.”. Frontiers in Immunology 14: 1250198. https://doi.org/10.3389/fimmu.2023.1250198.

Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.

Pahari, Susanta, Eusondia Arnett, Jan Simper, Abul Azad, Israel Guerrero-Arguero, Chengjin Ye, Hao Zhang, et al. (2023) 2023. “A New Tractable Method for Generating Human Alveolar Macrophage-Like Cells in Vitro to Study Lung Inflammatory Processes and Diseases.”. MBio 14 (4): e0083423. https://doi.org/10.1128/mbio.00834-23.

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-β, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines. IMPORTANCE Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

Pavan, Mauro, Chiara D Fanti, Alba Di Lucia, Elena Canato, Laura Acquasaliente, Fabio Sonvico, Jennifer Delgado, et al. (2023) 2023. “Aerosolized Sulfated Hyaluronan Derivatives Prolong the Survival of K18 ACE2 Mice Infected With a Lethal Dose of SARS-CoV-2.”. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences 187: 106489. https://doi.org/10.1016/j.ejps.2023.106489.

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.

Piergallini, Tucker J, Julia M Scordo, Anna Allué-Guardia, Paula A Pino, Hao Zhang, Hong Cai, Yufeng Wang, Larry S Schlesinger, Jordi B Torrelles, and Joanne Turner. (2023) 2023. “Acute Inflammation Alters Lung Lymphocytes and Potentiates Innate-Like Behavior in Young Mouse Lung CD8 T Cells, Resembling Lung CD8 T Cells from Old Mice.”. Journal of Leukocyte Biology. https://doi.org/10.1093/jleuko/qiad060.

Inflammation plays a significant role in lung infection including that caused by Mycobacterium tuberculosis (M.tb), where both adaptive and innate lymphocytes can affect infection control. How inflammation affects infection is understood in a broad sense, including inflammaging (chronic inflammation) seen in the elderly, but the explicit role that inflammation can play in regulation of lymphocyte function is not known. To fill this knowledge gap, we used an acute lipopolysaccharide (LPS) treatment in young mice and studied lymphocyte responses, focusing on CD8 T cell subsets. LPS treatment decreased the total numbers of T cells in the lungs of LPS mice, while also increasing the number of activated T cells. We demonstrate that lung CD8 T cells from LPS mice became capable of an antigen independent innate-like IFN-γ secretion, dependent on IL-12p70 stimulation, paralleling innate-like IFN-γ secretion of lung CD8 T cells from old mice. Overall, this study provides information on how acute inflammation can affect lymphocytes, particularly CD8 T cells, which could potentially affect immune control of various disease states.

Ye, Chengjin, Jun-Gyu Park, Kevin Chiem, Piyush Dravid, Anna Allué-Guardia, Andreu Garcia-Vilanova, Paula Pino Tamayo, et al. (2023) 2023. “Immunization With Recombinant Accessory Protein-Deficient SARS-CoV-2 Protects Against Lethal Challenge and Viral Transmission.”. Microbiology Spectrum, e0065323. https://doi.org/10.1128/spectrum.00653-23.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide coronavirus disease 2019 (COVID-19) pandemic. Despite the high efficacy of the authorized vaccines, there may be uncertain and unknown side effects or disadvantages associated with current vaccination approaches. Live-attenuated vaccines (LAVs) have been shown to elicit robust and long-term protection by the induction of host innate and adaptive immune responses. In this study, we sought to verify an attenuation strategy by generating 3 double open reading frame (ORF)-deficient recombinant SARS-CoV-2s (rSARS-CoV-2s) simultaneously lacking two accessory ORF proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). We report that these double ORF-deficient rSARS-CoV-2s have slower replication kinetics and reduced fitness in cultured cells compared with their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2s showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against SARS-CoV-2 and some variants of concern and activated viral component-specific T cell responses. Notably, double ORF-deficient rSARS-CoV-2s were able to protect, as determined by the inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2 in both K18 hACE2 mice and golden Syrian hamsters. Collectively, our results demonstrate the feasibility of implementing the double ORF-deficient strategy to develop safe, immunogenic, and protective LAVs to prevent SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Live-attenuated vaccines (LAVs) are able to induce robust immune responses, including both humoral and cellular immunity, representing a very promising option to provide broad and long-term immunity. To develop LAVs for SARS-CoV-2, we engineered attenuated recombinant SARS-CoV-2 (rSARS-CoV-2) that simultaneously lacks the viral open reading frame 3a (ORF3a) in combination with either ORF6, ORF7a, or ORF7b (Δ3a/Δ6, Δ3a/Δ7a, and Δ3a/Δ7b, respectively) proteins. Among them, the rSARS-CoV-2 Δ3a/Δ7b was completely attenuated and able to provide 100% protection against an otherwise lethal challenge in K18 hACE2 transgenic mice. Moreover, the rSARS-CoV-2 Δ3a/Δ7b conferred protection against viral transmission between golden Syrian hamsters.

Guerrero-Arguero, Israel, Siddiqur Rahman Khan, Brandon M Henry, Andreu Garcia-Vilanova, Kevin Chiem, Chengjin Ye, Sweta Shrestha, et al. (2023) 2023. “Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds As Antiviral Agents in Suspensions and Soft Fabric Materials.”. International Journal of Nanomedicine 18: 2307-24. https://doi.org/10.2147/IJN.S396669.

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials.

METHODS: Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined.

RESULTS: We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials.

CONCLUSION: This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.