Publications

Submitted

Influenza viruses present a significant public health risk, causing substantial illness and death in humans each year. Seasonal flu vaccines must be updated regularly, and their effectiveness often decreases due to mismatches with circulating strains. Furthermore, inactivated vaccines do not provide protection against shifted influenza viruses that have the potential to cause a pandemic. The highly pathogenic avian influenza H5N1 clade 2.3.4.4b is prevalent among wild birds worldwide and is causing a multi-state outbreak affecting poultry and dairy cows in the United States (US) since March 2024. In this study, we have generated a NS1 deficient mutant of a low pathogenic version of the cattle-origin human influenza A/Texas/37/2024 H5N1, namely LPhTXdNS1, and validated its safety, immunogenicity, and protection efficacy in a prime vaccination regimen against wild-type (WT) A/Texas/37/2024 H5N1. The attenuation of LPhTXdNS1 in vitro was confirmed by its reduced replication in cultured cells and inability to control IFNβ promoter activation. In C57BL/6J mice, LPhTXdNS1 has reduced viral replication and pathogenicity compared to WT A/Texas/37/2024 H5N1. Notably, LPhTXdNS1 vaccinated mice exhibited high immunogenicity that reach its peak at weeks 3 and 4 post-immunization, leading to robust protection against subsequent lethal challenge with WT A/Texas/37/2024 H5N1. Altogether, we demonstrate that a single dose vaccination with LPhTXdNS1 is safe and able to induce protective immune responses against H5N1. Both safety profile and protection immunity suggest that LPhTXdNS1 holds promise as a potential solution to address the urgent need for an effective vaccine in the event of a pandemic for the treatment of infected animals and humans.

A multistate outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in dairy cows was first reported on March 25, 2024, in the United States (US), marking the first discovery of HPAIV H5N1 in cattle. Soon after, a dairy worker on an affected dairy farm became the first human case linked directly to this outbreak. Studies with influenza A virus (IAV) require secondary methods to detect the virus in infected cells or animal models of infection. We modified the non-structural (NS) genome segment of the human A/Texas/37/2024 (HPhTX) H5N1 virus to create a recombinant virus expressing nanoluciferase (HPhTX NSs-Nluc), enabling the tracking of virus in cultured cells and mice via in vitroex vivo, and in vivo imaging systems (IVIS). In vitro, HPhTX NSs-Nluc showed growth and plaque characteristics similar to its wild-type (WT) counterpart. In vivo, HPhTX NSs-Nluc allowed tracking viral infection in the entire animals and in the organs of infected animals using in vivo and ex vivo IVIS, respectively. Importantly, the morbidity, mortality, and replication titers of HPhTX NSs-Nluc were comparable to those of the WT HPhTX. In vitro, HPhTX NSs-Nluc was inhibited by Baloxavir acid (BXA) to levels observed with WT HPhTX. We also demonstrate the feasibility of using HPhTX NSs-Nluc to evaluate the antiviral activity of BXA in vivo. Our findings support that HPhTX NSs-Nluc represents an excellent tool for tracking viral infections, including the identification of prophylactics or therapeutics for the treatment of the HPAIV H5N1 responsible of the outbreak in dairy cows.

Background: Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in pfKelch13, the molecular marker of resistance, are widely reported in East Africa. Effective in vitro assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for in vitro phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R. Here, we extend and refine this assay to include measurements of parasite growth and recovery after drug exposure. Clinical isolates and progeny from two genetic crosses were used to optimize and validate the reliability of a straight-from-blood, SYBR Green-based qPCR protocol in a 96-well plate format to accurately measure phenotypes for Growth, Resistance, and Recovery.

Results: The assay determined growth between 6 h and 96 h, resistance at 120 h, and recovery from 120 h and 192 h. Growth can be accurately captured by qPCR and is shown by reproduction of previous growth phenotypes from HB3 × Dd2. Resistance measured at 120 h continually shows the most consistent phenotype for ring stage susceptibility. Recovery identifies an additional response to drug than parasites that are determined sensitive by Fold Change at 120 h. Comparison of progeny phenotypes for Growth vs Resistance showed a minor but significant correlation, whereas Growth vs Recovery and Resistance vs Recovery showed no significant correlation. Additionally, dried blood spot (DBS) samples matched Fold Change measured from liquid samples demonstrating Resistance can be easily quantified using either storage method.

Conclusions: The qPCR-based methodology provides the throughput needed to quickly measure large numbers of parasites for multiple relevant phenotypes. Growth can reveal fitness defects and illuminate relationships between proliferation rates and drug response. Recovery serves as a complementary phenotype to resistance that quantifies the ability of sensitive parasites to tolerate drug exposure. All three phenotypes offer a comprehensive assessment of parasite-drug interaction each with independent genetic determinants of main effect and overlapping secondary effects that should be further. By adapting our method to include DBS, readouts can be easily extended to ex vivo surveillance applications.

There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.

Schistosomes are obligately sexual blood flukes that can be maintained in the laboratory using freshwater snails as intermediate and rodents as definitive hosts. The genetic composition of laboratory schistosome populations is poorly understood: whether genetic variation has been purged due to serial inbreeding or retained is unclear. We sequenced 19 - 24 parasites from each of five laboratory Schistosoma mansoni populations and compared their genomes with published exome data from four S. mansoni field populations. We found abundant genomic variation (0.897 - 1.22 million variants) within laboratory populations: these retained on average 49% (π = 3.27e-04 - 8.94e-04) of the nucleotide diversity observed in the four field parasite populations (π = 1.08e-03 - 2.2e-03). However, the pattern of variation was very different in laboratory and field populations. Tajima's D was positive in all laboratory populations except SmBRE, indicative of recent population bottlenecks, but negative in all field populations. Current effective population size estimates of laboratory populations were lower (2 - 258) compared to field populations (3,174 - infinity). The distance between markers at which linkage disequilibrium (LD) decayed to 0.5 was longer in laboratory populations (59 bp - 180 kb) compared to field populations (9 bp - 9.5 kb). SmBRE was the least variable; this parasite also shows low fitness across the lifecycle, consistent with inbreeding depression. The abundant genetic variation present in most laboratory schistosome populations has several important implications: (i) measurement of parasite phenotypes, such as drug resistance, using laboratory parasite populations will determine average values and underestimate trait variation; (ii) genome-wide association studies (GWAS) can be conducted in laboratory schistosome populations by measuring phenotypes and genotypes of individual worms; (iii) genetic drift may lead to divergence in schistosome populations maintained in different laboratories. We conclude that the abundant genetic variation retained within many laboratory schistosome populations can provide valuable, untapped opportunities for schistosome research.

Background: The microbiome is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. The microbiome may influence transmission of pathogens by their vectors, such as mosquitoes or aquatic snails. We previously sequenced the V4 region of the bacterial 16S rRNA gene from the hemolymph (blood) of Biomphalaria spp. snails, vectors of the human blood fluke schistosome. We showed that snail hemolymph harbored an abundant and diverse microbiome. This microbiome is distinct from the water environment and can discriminate snail species and populations. As hemolymph bathes snail organs, we then investigated the heterogeneity of the microbiome in these organs.

Results: We dissected ten snails for each of two different species (B. alexandrina and B. glabrata) and collected their hemolymph and organs (ovotestis, hepatopancreas, gut, and stomach). We also ground in liquid nitrogen four whole snails of each species. We sampled the water in which the snails were living (environmental controls). Sequencing the 16S rRNA gene revealed organ-specific microbiomes. These microbiomes harbored a lower diversity than the hemolymph microbiome, and the whole-snail microbiome. The organ microbiomes tend to cluster by physiological function. In addition, we showed that the whole-snail microbiome is more similar to hemolymph microbiome.

Conclusions: These results are critical for future work on snail microbiomes and show the necessity of sampling individual organ microbiomes to provide a complete description of snail microbiomes.

Pooled sequencing provides a rapid cost-effective approach to assess genetic variation segregating within populations of organisms. However, such studies are typically limited to single nucleotide variants and small indels (≤ 50bp), and have not been used for structural variants (SVs; >50bp) which impact large portions of most genomes and may significantly impact phenotype. Here, we examined SVs circulating in five laboratory populations of the human parasite Schistosoma mansoni by generating long-read sequences from pools of worms (92 -152 per population). We were able identify and genotype 17,446 SVs, representing 6.5% of the genome despite challenges in identifying low frequency variants. SVs included deletions (n=8,525), duplications (n=131), insertions (n=8,410), inversions (n=311), and translocations (n=69) and were enriched in repeat regions. More than half (59%) of the SVs were shared between ≥4 populations, but 12% were found in only one of the five populations. Within this subset, we identified 168 population-specific SVs that were at-or-near fixation (>95% alternate allele frequency) in one population but missing (<5%) in the other four populations. Five of these variants impact the coding sequence of 6 genes. We also identified 8 SVs with extreme allele frequency differences between populations within quantitative trait loci for biomedically important pathogen phenotypes (drug resistance, larval stage production) identified in prior genetic mapping studies. These results demonstrate that long-read sequence data from pooled individuals is a viable method to quickly catalogue SVs circulating within populations. Furthermore, some of these variants may be responsible for, or linked to, regions experiencing, population-specific directional selection.

Background The microbiome of disease vectors can be a key determinant of their ability to transmit parasites. Conversely, parasite infection may modify vector microbiomes. We are exploring the interactions between the Biomphalaria glabrata snail microbiome and the blood fluke Schistosoma mansoni, responsible for an estimated 200,000 human deaths each year. Snail hosts vary in their susceptibility to schistosome parasites, and the underlying mechanisms driving this variation are not fully understood. We have previously shown that the snail hemolymph (i.e., blood) and organs harbor a diverse microbiome. Here we investigate the impact of schistosome infection on snail microbiomes, hypothesizing that invading schistosomes can alter the snail microbiomes in both composition and abundance over the course of infection, as developing schistosome parasites are in close contact with the host tissues.

Result We generated cohorts of uninfected and S. mansoni infected snails. We collected snail hemolymph and hepatopancreas (i.e., liver) at 8 timepoints during the pre-patent and patent periods of schistosome infection. We quantified bacterial density using qPCR and profiled the microbiome composition of all samples by sequencing the V4 region of the 16S rRNA. Schistosome infection had surprisingly no effect on bacterial density and limited effect on the microbiome composition, affecting mainly the hemolymph during the pre-patent period (at day 7 and 21). Organ and hemolymph microbiomes were relatively stable overtime for both infected and uninfected snail cohorts. The sample type (hemolymph, hepatopancreas) was the major driver of the differences observed in microbiome composition.

Conclusions The limited impact of schistosome infection on the host snail microbiomes might be explained by the long-term interaction of the two partners and the fact that parasite fitness is closely dependent on host fitness. Further investigations into the interactions between snails, their microbiomes, and schistosome parasites are essential for developing strategies to disrupt the parasite lifecycle and, consequently, schistosomiasis transmission.

 

The microbiome is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. The microbiome may influence transmission of pathogens by their vectors, such as mosquitoes or aquatic snails. We previously sequenced the V4 region of the bacterial 16S rRNA gene from the hemolymph (blood) of Biomphalaria spp. snails, vectors of the human blood fluke schistosome. We showed that snail hemolymph harbored an abundant and diverse microbiome. This microbiome is distinct from the water environment and can discriminate snail species and populations. As hemolymph bathes snail organs, we then investigated the heterogeneity of the microbiome in these organs.

 

We dissected ten snails for each of two different species (B. alexandrina and B. glabrata) and collected their hemolymph and organs (ovotestis, hepatopancreas, gut, and stomach). We also ground in liquid nitrogen four whole snails of each species. We sampled the water in which the snails were living (environmental controls). Sequencing the 16S rRNA gene revealed organ-specific microbiomes. These microbiomes harbored a lower diversity than the hemolymph microbiome, and the whole-snail microbiome. The organ microbiomes tend to cluster by physiological function. In addition, we showed that the whole-snail microbiome is more similar to hemolymph microbiome.

 

These results are critical for future work on snail microbiomes and show the necessity of sampling individual organ microbiomes to provide a complete description of snail microbiomes.

2025

The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.