Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.
Publications
2020
Currently there is only one method of treatment for human schistosomiasis, the drug praziquantel. Strong selective pressure has caused a serious concern for a rise in resistance to praziquantel leading to the necessity for additional pharmaceuticals, with a distinctly different mechanism of action, to be used in combination therapy with praziquantel. Previous treatment of Schistosoma mansoni included the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The oxamniquine activating enzyme was identified as a S. mansoni sulfotransferase (SmSULT-OR). Structural data have allowed for directed drug development in reengineering oxamniquine to be effective against S. haematobium and S. japonicum. Guided by data from X-ray crystallographic studies and Schistosoma worm killing assays on oxamniquine, our structure-based drug design approach produced a robust SAR program that tested over 300 derivatives and identified several new lead compounds with effective worm killing in vitro. Previous studies resulted in the discovery of compound CIDD-0066790, which demonstrated broad-species activity in killing of schistosome species. As these compounds are racemic mixtures, we tested and demonstrate that the R enantiomer CIDD-007229 kills S. mansoni, S. haematobium and S. japonicum better than the parent drug (CIDD-0066790). The search for derivatives that kill better than CIDD-0066790 has resulted in a derivative (CIDD- 149830) that kills 100% of S. mansoni, S. haematobium and S. japonicum adult worms within 7 days. We hypothesize that the difference in activation and thus killing by the derivatives is due to the ability of the derivative to fit in the binding pocket of each sulfotransferase (SmSULT-OR, ShSULT-OR, SjSULT-OR) and to be efficiently sulfated. The purpose of this research is to develop a second drug to be used in conjunction with praziquantel to treat the major human species of Schistosoma. Collectively, our findings show that CIDD-00149830 and CIDD-0072229 are promising novel drugs for the treatment of human schistosomiasis and strongly support further development and in vivo testing.
BACKGROUND: Tracking and understanding artemisinin resistance is key for preventing global setbacks in malaria eradication efforts. The ring-stage survival assay (RSA) is the current gold standard for in vitro artemisinin resistance phenotyping. However, the RSA has several drawbacks: it is relatively low throughput, has high variance due to microscopy readout, and correlates poorly with the current benchmark for in vivo resistance, patient clearance half-life post-artemisinin treatment. Here a modified RSA is presented, the extended Recovery Ring-stage Survival Assay (eRRSA), using 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives, including parasite isolates with and without kelch13 mutations.
METHODS: Plasmodium falciparum cultures were synchronized with single layer Percoll during the schizont stage of the intraerythrocytic development cycle. Cultures were left to reinvade to early ring-stage and parasitaemia was quantified using flow cytometry. Cultures were diluted to 2% haematocrit and 0.5% parasitaemia in a 96-well plate to start the assay, allowing for increased throughput and decreased variability between biological replicates. Parasites were treated with 700 nM of dihydroartemisinin or 0.02% dimethyl sulfoxide (DMSO) for 6 h, washed three times in drug-free media, and incubated for 66 or 114 h, when samples were collected and frozen for PCR amplification. A SYBR Green-based quantitative PCR method was used to quantify the fold-change between treated and untreated samples.
RESULTS: 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives were assayed using the eRRSA. Due to the large number of pyknotic and dying parasites at 66 h post-exposure (72 h sample), parasites were grown for an additional cell cycle (114 h post-exposure, 120 h sample), which drastically improved correlation with patient clearance half-life compared to the 66 h post-exposure sample. A Spearman correlation of - 0.8393 between fold change and patient clearance half-life was identified in these 15 isolates from Southeast Asia, which is the strongest correlation reported to date.
CONCLUSIONS: eRRSA drastically increases the efficiency and accuracy of in vitro artemisinin resistance phenotyping compared to the traditional RSA, which paves the way for extensive in vitro phenotyping of hundreds of artemisinin resistant parasites.
In high-transmission regions, we expect parasite lineages within complex malaria infections to be unrelated due to parasite inoculations from different mosquitoes. This project was designed to test this prediction. We generated 485 single-cell genome sequences from fifteen P. falciparum malaria patients from Chikhwawa, Malawi-an area of intense transmission. Patients harbored up to seventeen unique parasite lineages. Surprisingly, parasite lineages within infections tend to be closely related, suggesting that superinfection by repeated mosquito bites is rarer than co-transmission of parasites from a single mosquito. Both closely and distantly related parasites comprise an infection, suggesting sequential transmission of complex infections between multiple hosts. We identified tetrads and reconstructed parental haplotypes, which revealed the inbred ancestry of infections and non-Mendelian inheritance. Our analysis suggests strong barriers to secondary infection and outbreeding amongst malaria parasites from a high transmission setting, providing unexpected insights into the biology and transmission of malaria.
2019
Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.
Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3-8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108-613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
BACKGROUND: Parasite traits associated with transmission success, such as the number of infective stages released from the host, are expected to be optimized by natural selection. However, in the trematode parasite Schistosoma mansoni, a key transmission trait, i.e. the number of cercariae larvae shed from infected Biomphalaria spp. snails, varies significantly within and between different parasite populations and selection experiments demonstrate that this variation has a strong genetic basis. In this study, we compared the transmission strategies of two laboratory schistosome population and their consequences for their snail host.
METHODS: We infected inbred Biomphalaria glabrata snails using two S. mansoni parasite populations (SmBRE and SmLE), both isolated from Brazil and maintained in the laboratory for decades. We compared life history traits of these two parasite populations by quantifying sporocyst growth within infected snails (assayed using qPCR), output of cercaria larvae and impact on snail host physiological response (i.e. hemoglobin rate, laccase-like activity) and survival.
RESULTS: We identified striking differences in virulence and transmission between the two studied parasite populations. SmBRE (low shedder (LS) parasite population) sheds very low numbers of cercariae and causes minimal impact on the snail physiological response (i.e. laccase-like activity, hemoglobin rate and snail survival). In contrast, SmLE (high shedder (HS) parasite population) sheds 8-fold more cercariae (mean ± SE cercariae per shedding: 284 ± 19 vs 2352 ± 113), causes high snail mortality and has strong impact on snail physiology. We found that HS sporocysts grow more rapidly inside the snail host, comprising up to 60% of cells within infected snails, compared to LS sporocysts, which comprised up to 31%. Cercarial production is strongly correlated to the number of S. mansoni sporocyst cells present within the snail host tissue, although the proportion of sporocyst cells alone does not explain the low cercarial shedding of SmBRE.
CONCLUSIONS: We demonstrated the existence of alternative transmission strategies in the S. mansoni parasite consistent with trade-offs between parasite transmission and host survival: a "boom-bust" strategy characterized by high virulence, high transmission and short duration infections and a "slow and steady" strategy with low virulence, low transmission but long duration of snail host infections.
BACKGROUND: Competitive outcomes between co-infecting malaria parasite lines can reveal fitness disparities in blood stage growth. Blood stage fitness costs often accompany the evolution of drug resistance, with the expectation that relatively fitter parasites will be more likely to spread in populations. With the recent emergence of artemisinin resistance, it is important to understand the relative competitive fitness of the metabolically active asexual blood stage parasites. Genetically distinct drug resistant parasite clones with independently evolved sets of mutations are likely to vary in asexual proliferation rate, contributing to their chance of transmission to the mosquito vector.
METHODS: An optimized in vitro 96-well plate-based protocol was used to quantitatively measure-head-to-head competitive fitness during blood stage development between seven genetically distinct field isolates from a hotspot of emerging artemisinin resistance and the laboratory strain, NF54. These field isolates were isolated from patients in Southeast Asia carrying different alleles of kelch13 and included both artemisinin-sensitive and artemisinin-resistant isolates. Fluorescent labeled microsatellite markers were used to track the relative densities of each parasite throughout the co-growth period of 14-60 days. All-on-all competitions were conducted for the panel of eight parasite lines (28 pairwise competitions) to determine their quantitative competitive fitness relationships.
RESULTS: Twenty-eight pairwise competitive growth outcomes allowed for an unambiguous ranking among a set of seven genetically distinct parasite lines isolated from patients in Southeast Asia displaying a range of both kelch13 alleles and clinical clearance times and a laboratory strain, NF54. This comprehensive series of assays established the growth relationships among the eight parasite lines. Interestingly, a clinically artemisinin resistant parasite line that carries the wild-type form of kelch13 outcompeted all other parasites in this study. Furthermore, a kelch13 mutant line (E252Q) was competitively more fit without drug than lines with other resistance-associated kelch13 alleles, including the C580Y allele that has expanded to high frequencies under drug pressure in Southeast Asian resistant populations.
CONCLUSIONS: This optimized competitive growth assay can be employed for assessment of relative growth as an index of fitness during the asexual blood stage growth between natural lines carrying different genetic variants associated with artemisinin resistance. Improved understanding of the fitness costs of different parasites proliferating in human blood and the role different resistance mutations play in the context of specific genetic backgrounds will contribute to an understanding of the potential for specific mutations to spread in populations, with the potential to inform targeted strategies for malaria therapy.