Publications

2018

Howard, Nicole C, Nancy D Marin, Mushtaq Ahmed, Bruce A Rosa, John Martin, Monika Bambouskova, Alexey Sergushichev, et al. (2018) 2018. “Publisher Correction: Mycobacterium Tuberculosis Carrying a Rifampicin Drug Resistance Mutation Reprograms Macrophage Metabolism through Cell Wall Lipid Changes.”. Nature Microbiology 3 (11): 1327. https://doi.org/10.1038/s41564-018-0281-9.

In the version of this Letter originally published, in Fig. 2d, in the third graph, the label for the y axis was incorrect as 'TNF-α (pg ml-1)'; it should have read 'IL-1β (pg ml-1)'. This has now been corrected.

García, Juan Ignacio, Meritxell Sabidó, Mikhail Nikiforov, Adriana Smith, Gabriela Hernández, Rudy Ortiz, Luis Ardani, et al. (2018) 2018. “The UALE Project: A Cross-Sectional Approach for Trends in HIV/STI Prevalence Among Key Populations Attending STI Clinics in Guatemala.”. BMJ Open 8 (9): e022632. https://doi.org/10.1136/bmjopen-2018-022632.

OBJECTIVE: To describe and compare trends in prevalence, sexual behaviour and HIV transmission knowledge data related to sexually transmitted infections (STI) and HIV in patients attending three STI clinics over an 8-year period in Escuintla Department, Guatemala.

METHODS: STI clinic attendees were classified into transmission groups as follows: female sex workers (FSW), men who have sex with men (MSM) and 'high-risk heterosexuals' (HRH). Annual cross-sectional analysis and multivariable Poisson regression adjusted for sociodemographic variables were used for prevalence comparisons and adjusted prevalence trends for HIV/STI outcomes and used for adjusted trends in proportions in sexual behaviour and HIV transmission knowledge outcomes. Endocervical swabs were obtained to detect trichomonas, chlamydia and neisseria infections. Serologies for syphilis and HIV were performed using rapid tests. For reactive HIV samples, positivity was confirmed by an ELISA. All reactive syphilis samples were further confirmed for diagnosis of active syphilis disease.

RESULTS: From a total of 4027 clinic attendees, 3213 (79.78%) were FSW, 229 (5.69%) were MSM and 585 (14.53%) were HRH. The proportion of FSW, MSM and HRH who had a single visit was 56.42%, 57.23% and 91.10%, respectively. Overall, HIV prevalence was 2.10% in FSW, 8.17% in MSM and 4.12% in HRH. Prevalence trends in HIV and syphilis decreased in FSW. Prevalence trends in gonorrhoea did not decrease over time neither in FSW nor in HRH. Chlamydia and trichomonas infections in HRH showed an increase prevalence trend. In FSW, trends in condom use in last sexual intercourse with regular and occasional clients were above 93%.

CONCLUSIONS: FSW show a decreasing trend in HIV, syphilis and chlamydia prevalence. Gonorrhoea prevalence in FSW and HRH did not decrease over time. HRH is a hard to engage population with low follow-up rates and high potential to act as a bridge population.

Howard, Nicole C, Nancy D Marin, Mushtaq Ahmed, Bruce A Rosa, John Martin, Monika Bambouskova, Alexey Sergushichev, et al. (2018) 2018. “Mycobacterium Tuberculosis Carrying a Rifampicin Drug Resistance Mutation Reprograms Macrophage Metabolism through Cell Wall Lipid Changes.”. Nature Microbiology 3 (10): 1099-1108. https://doi.org/10.1038/s41564-018-0245-0.

Tuberculosis is a significant global health threat, with one-third of the world's population infected with its causative agent Mycobacterium tuberculosis (Mtb). The emergence of multidrug-resistant (MDR) Mtb that is resistant to the frontline anti-tubercular drugs rifampicin and isoniazid forces treatment with toxic second-line drugs. Currently,  4% of new and  21% of previously treated tuberculosis cases are either rifampicin-drug-resistant or MDR Mtb infections1. The specific molecular host-pathogen interactions mediating the rapid worldwide spread of MDR Mtb strains remain poorly understood. W-Beijing Mtb strains are highly prevalent throughout the world and associated with increased drug resistance2. In the early 1990s, closely related MDR W-Beijing Mtb strains (W strains) were identified in large institutional outbreaks in New York City and caused high mortality rates3. The production of interleukin-1β (IL-1β) by macrophages coincides with the shift towards aerobic glycolysis, a metabolic process that mediates protection against drug-susceptible Mtb4. Here, using a collection of MDR W-Mtb strains, we demonstrate that the overexpression of Mtb cell wall lipids, phthiocerol dimycocerosates, bypasses the interleukin 1 receptor, type I (IL-1R1) signalling pathway, instead driving the induction of interferon-β (IFN-β) to reprogram macrophage metabolism. Importantly, Mtb carrying a drug resistance-conferring single nucleotide polymorphism in rpoB (H445Y)5 can modulate host macrophage metabolic reprogramming. These findings transform our mechanistic understanding of how emerging MDR Mtb strains may acquire drug resistance single nucleotide polymorphisms, thereby altering Mtb surface lipid expression and modulating host macrophage metabolic reprogramming.

Amici, Stephanie A, Nicholas A Young, Janiret Narvaez-Miranda, Kyle A Jablonski, Jesús Arcos, Lucia Rosas, Tracey L Papenfuss, Jordi B Torrelles, Wael N Jarjour, and Mireia Guerau-de-Arellano. (2018) 2018. “CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions.”. Frontiers in Immunology 9: 1593. https://doi.org/10.3389/fimmu.2018.01593.

Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.

2017

Scordo, Julia M, Jesús Arcos, Holden Kelley V, Lauren Diangelo, Smitha J Sasindran, Ellie Youngmin, Mark D Wewers, Shu-Hua Wang, Joan-Miquel Balada-Llasat, and Jordi B Torrelles. (2017) 2017. “Mycobacterium Tuberculosis Cell Wall Fragments Released Upon Bacterial Contact With the Human Lung Mucosa Alter the Neutrophil Response to Infection.”. Frontiers in Immunology 8: 307. https://doi.org/10.3389/fimmu.2017.00307.

In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis (M.tb) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.

Arcos, J, S J Sasindran, J I Moliva, J M Scordo, S Sidiki, H Guo, P Venigalla, et al. (2017) 2017. “Mycobacterium Tuberculosis Cell Wall Released Fragments by the Action of the Human Lung Mucosa Modulate Macrophages to Control Infection in an IL-10-Dependent Manner.”. Mucosal Immunology 10 (5): 1248-58. https://doi.org/10.1038/mi.2016.115.

Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is a major public health challenge facing the world. During infection, M.tb is deposited in the lung alveolar space where it comes in contact with the lung mucosa, known as alveolar lining fluid (ALF), an environment that M.tb encounters at different stages of the infection and disease. ALF is abundant in homeostatic and antimicrobial hydrolytic enzymes, also known as hydrolases. Here we demonstrate that ALF hydrolases, at their physiological concentrations and upon contact with M.tb, release M.tb cell envelope fragments into the milieu. These released fragments are bioactive, but non-cytotoxic, regulate the function of macrophages, and thus are capable of modulating the immune response contributing to the control of M.tb infection by human macrophages. Specifically, macrophages exposed to fragments derived from the exposure of M.tb to ALF were able to control the infection primarily by increasing phagosome-lysosome fusion and acidification events. This enhanced control was found to be dependent on fragment-induced interleukin-10 (IL-10) production but also involves the STAT3 signaling pathway in an IL-10-independent manner. Collectively our data indicate that M.tb fragments released upon contact with lung mucosa hydrolases participate in the host immune response to M.tb infection through innate immune modulation.

Torrelles, Jordi B, and Larry S Schlesinger. (2017) 2017. “Integrating Lung Physiology, Immunology, and Tuberculosis.”. Trends in Microbiology 25 (8): 688-97. https://doi.org/10.1016/j.tim.2017.03.007.

Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence.

Hill, Preston J, Julia M Scordo, Jesús Arcos, Stephen E Kirkby, Mark D Wewers, Daniel J Wozniak, and Jordi B Torrelles. (2017) 2017. “Modifications of Pseudomonas Aeruginosa Cell Envelope in the Cystic Fibrosis Airway Alters Interactions With Immune Cells.”. Scientific Reports 7 (1): 4761. https://doi.org/10.1038/s41598-017-05253-9.

Pseudomonas aeruginosa is a ubiquitous environmental organism and an opportunistic pathogen that causes chronic lung infections in the airways of cystic fibrosis (CF) patients as well as other immune-compromised individuals. During infection, P. aeruginosa enters the terminal bronchioles and alveoli and comes into contact with alveolar lining fluid (ALF), which contains homeostatic and antimicrobial hydrolytic activities, termed hydrolases. These hydrolases comprise an array of lipases, glycosidases, and proteases and thus, they have the potential to modify lipids, carbohydrates and proteins on the surface of invading microbes. Here we show that hydrolase levels between human ALF from healthy and CF patients differ. CF-ALF influences the P. aeruginosa cell wall by reducing the content of one of its major polysaccharides, Psl. This CF-ALF induced Psl reduction does not alter initial bacterial attachment to surfaces but reduces biofilm formation. Importantly, exposure of P. aeruginosa to CF-ALF drives the activation of neutrophils and triggers their oxidative response; thus, defining human CF-ALF as a new innate defense mechanism to control P. aeruginosa infection, but at the same time potentially adding to the chronic inflammatory state of the lung in CF patients.

Moliva, Juan I, Joanne Turner, and Jordi B Torrelles. (2017) 2017. “Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect Against Mycobacterium Tuberculosis?”. Frontiers in Immunology 8: 407. https://doi.org/10.3389/fimmu.2017.00407.

Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world's population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.

Glass, Lisa N, Ganduri Swapna, Sivagami Sundaram Chavadi, JoAnn M Tufariello, Kaixia Mi, Joshua E Drumm, TuKiet T Lam, et al. (2017) 2017. “Mycobacterium Tuberculosis Universal Stress Protein Rv2623 Interacts With the Putative ATP Binding Cassette (ABC) Transporter Rv1747 to Regulate Mycobacterial Growth.”. PLoS Pathogens 13 (7): e1006515. https://doi.org/10.1371/journal.ppat.1006515.

We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv1747 might function as a transporter of PIMs. Because these glycolipids are major mycobacterial cell envelope components that can impact on the immune response, our findings raise the possibility that Rv2623 may regulate bacterial growth, virulence, and entry into persistence, at least in part, by modulating the levels of bacillary PIM expression, perhaps through negatively regulating the Rv1747-dependent export of the immunomodulatory PIMs to alter host-pathogen interaction, thereby influencing the fate of M. tuberculosis in vivo.